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Abstract 
New results in the theory of nomic probability have led to a theory of probable 
probabilities, which licenses defeasible inferences between probabilities that are 
not validated by the probability calculus. Among these are classical principles of 
direct inference together with some new more general principles that greatly 
strengthen direct inference and make it much more useful. 

 

 I first learned about direct inference from Henry Kyburg, when I was a young faculty member 
at the University of Rochester. I worked through his book The Foundations of Statistical Inference 
(Kyburg 1974) with great care, and had many long and fruitful conversations with him. Over the 
years, my own views evolved and diverged from Kyburg’s, but his original insights are evident 
throughout my work. 
 Direct inference pertains to a fundamental but often overlooked distinction between two kinds 
of probabilities. What I will call generic probabilities2 are general probabilities, relating properties or 
relations. For example, we can talk about the probability of an adult male of Slavic descent being 
lactose intolerant. This is not about any particular person — it expresses a relationship between the 
property of being an adult male of Slavic descent and the property of being lactose intolerant. Most 
forms of statistical inference or statistical induction are most naturally viewed as giving us 
information about generic probabilities. On the other hand, for many purposes we are more 
interested in propositions that are about particular persons, or more generally, about specific 
matters of fact. For example, in deciding how to treat Herman, an adult male of Slavic descent, his 
doctor may want to know the probability that Herman is lactose intolerant. This illustrates the need 
for a kind of probability that attaches to propositions rather than relating properties and relations. 
These are sometimes called “single case probabilities”, although that terminology is not very good 
because such probabilities can attach to propositions of any logical form. For example, we can ask 
how probable it is that there are no human beings over the age of 130. In the past, I called these 
“definite probabilities”, but now I will refer to them as singular probabilities. 
 Most people find the distinction between generic probabilities and singular probabilities 
intuitively clear, and yet most contemporary work in probability theory ignores it. This may be 
because of the popularity of subjective probability, which does not seem to be able to make sense 
of generic probabilities.3 This neglect of generic probabilities is odd, however, because most of the 
historical work on objective probability pertained to generic probabilities. I will say more about this 
below. 
 If statistical inference leads to knowledge of generic probabilities, we still need a way of 
discovering the values of singular probabilities. Direct inference is supposed to filll this gap. For 

                                                
1 This work was supported by NSF grant no. IIS-0412791. 
2 In the past, I followed Jackson and Pargetter 1973 in calling these “indefinite probabilities”, but I never liked that 
terminology.  
3 The only attempt I know to define generic probability within a subjectivist framework is that of Jackson and Pargetter 
(1973), but it has the consequence that if the agent knows the relative frequency then the generic probability equals the 
relative frequency. 
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instance, if we know that the generic probability of an adult male of Slavic descent being lactose 
intolerant is .35, and we know that Herman is an adult male of Slavic descent, we may infer that the 
probability of Herman being lactose intolerant is .35. This illustrates direct inference. In direct 
inference we infer singular probabilities from generic probabilities. 
 Kyburg (1974) was the first to propose a detailed theory of direct inference. His theory 
proceeded by postulating precise rules of direct inference and then defining singular probability in 
terms of those rules. In Pollock (1990), I proposed instead to define singular probabilities in terms of 
generic probabilities and then derive rules of direct inference from the theory of generic 
probability. The rules thus obtained were similar to Kyburg’s, but like Kyburg’s theory, the theory 
retained a somewhat ad hoc flavor. Some of the assumptions made about generic probabilities 
were chosen specifically to obtain the desired rules of direct inference. This paper aims to rectify 
that. New results in the theory of generic probability lead to a general theory of “probable 
probabilities”, and that leads to a more general and better motivated theory of direct inference. 

1. Generic Probabilities and Nomic Probability 
 Most objective approaches tie probabilities to relative frequencies in some essential way, and the 
resulting probabilities have the same logical form as the relative frequencies. That is, they are 
generic probabilities. The simplest theories identify generic probabilities with relative frequencies.4 
This was Kyburg’s (1961, 1974) view. However, it is often objected, fairly I think, that such “finite 
frequency theories” are at least sometimes inadequate because our probability judgments often 
diverge from relative frequencies. For example, we can talk about a coin being fair (and so the 
generic probability of a flip landing heads is 0.5) even when it is flipped only once and then 
destroyed (in which case the relative frequency is either 1 or 0). For understanding such generic 
probabilities, it has been suggested that we need a notion of probability that talks about possible 
instances of properties as well as actual instances. Theories of this sort are sometimes called 
“hypothetical frequency theories”. C. S. Peirce was perhaps the first to make a suggestion of this 
sort. Similarly, the statistician R. A. Fisher, regarded by many as “the father of modern statistics”, 
identified probabilities with ratios in a “hypothetical infinite population, of which the actual data is 
regarded as constituting a random sample” (1922, p. 311). Karl Popper (1956, 1957, and 1959) 
endorsed a theory along these lines and called the resulting probabilities propensities. Henry 
Kyburg (1974a) was the first to construct a precise version of this theory (although he did not 
endorse the theory), and it is to him that we owe the name “hypothetical frequency theories”. 
Kyburg (1974a) also insisted that von Mises should be considered a hypothetical frequentist. More 
recent attempts to formulate precise versions of what might be regarded as hypothetical frequency 
theories are van Fraassen (1981), Bacchus (1990), Halpern (1990), Pollock (1983, 1984, 1990), and 
Bacchus et al (1996). I will sketch my own proposal here. 
 I do not think that it should be supposed that there is just one sensible kind of generic 
probability. However, in my (1990) I suggested that there is a central kind of generic probability in 
terms of which a number of other kinds can be defined. This central kind of generic probability is 
what I called nomic probability. Nomic probabilities are supposed to be the subject matter of 
statistical laws of nature. Exceptionless general laws, like “All electrons are negatively charged”, are 
not just about actual electrons, but also about all physically possible electrons. We can think of such 
a law as reporting that any physically possible electron would be negatively charged. This is an 
example of a nomic generalization. We can think of nomic probabilities as telling us instead that that a 
certain proportion of physically possible objects of a certain sort will have some other property. For 
example, we might have a law to the effect that the probability of a hadron being negatively 
charged is .5. We can think of this as telling us that half of all physically possible hadrons would be 
negatively charged. 
 Following Pollock (1990), I propose that we can identify the nomic probability probx(Fx/Gx) with 
the proportion of physically possible G’s that are F’s. A physically possible G is defined to be an 
ordered pair 〈w,x〉 such that w is a physically possible world (one compatible with all of the physical 
laws) and x has the property G at w. Let us define the subproperty relation as follows: 

 F 7 G iff it is physically necessary (follows from true physical laws) that (∀x)(Fx → Gx). 

                                                
4 Examples are Russell (1948); Braithwaite (1953); Kyburg (1961, 1974); Sklar (1970, 1973). William Kneale (1949) traces 
the frequency theory to R. L. Ellis, writing in the 1840’s, and John Venn (1888) and C. S. Peirce in the 1880’s and 1890’s. 
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We can think of the subproperty relation as a kind of nomic entailment relation (holding between 
properties rather than propositions). More generally, F and G can have any number of free 
variables (not necessarily the same number), in which case F 7 G iff the universal closure of (F → 
G) is physically necessary. 
 Given a suitable proportion function ρ, we could stipulate that, where F and G are the sets of 
physically possible F’s and G’s respectively: 

  probx(Fx/Gx) = ρ(F,G).5 

However, it is unlikely that we can pick out the right proportion function without appealing to 
prob itself, so the postulate is simply that there is some proportion function related to prob as 
above. This is merely taken to tell us something about the formal properties of prob. Rather than 
axiomatizing prob directly, it turns out to be more convenient to adopt axioms for the proportion 
function. Proportion functions are a generalization of measure functions, studied in mathematics in 
measure theory. Pollock (1990) showed that, given the assumptions adopted there, ρ and prob are 
interdefinable, so the same empirical considerations that enable us to evaluate prob inductively also 
determine ρ. 
 Note that probx is a variable-binding operator, binding the variable x. When there is no danger 
of confusion, I will omit the subscript “x”, but sometimes we will want to quantify into probability 
contexts, in which case it will be important to distinguish between the variables bound by “prob” 
and those that are left free. To simplify expressions, I will often omit the variables, writing 
“prob(F/G)” for “prob(Fx/Gx)” when no confusion will result. 
 It is often convenient to write proportions in the same logical form as probabilities, so where ϕ 
and θ  are open formulas with free variable x, let !x (" /#) = !({x |" &#},{x |#}) . !x  is a variable-
binding operator, binding the variable x. Again, when there is no danger of confusion, I will 
typically omit the subscript “x”. 
 I will make three classes of assumptions about the proportion function. Let #X be the cardinality 
of a set X. If Y is finite, I assume: 
 

  
  
!(X,Y) =

#X "Y

#Y
. 

 
However, for present purposes the proportion function is most useful in talking about proportions 
among infinite sets. The sets F and G will invariably be infinite, if for no other reason than that 
there are infinitely many physically possible worlds in which there are F’s and G’s.  
 My second set of assumptions is that standard axioms for conditional probabilities hold for 
proportions. These axioms automatically hold for relative frequencies among finite sets, so the 
assumption is just that they also hold for proportions among infinite sets. 
 Because proportions are always conditional, they cannot be defined in the standard way in 
terms of ratios of “unconditional proportions”. The latter notion makes no sense. Technically, 
proportions are Popper functions (Popper 1956). This has two important consequences. First, 
ρ(A/B&C) can be well-defined even when ρ(B/C) = 0. Second, if ρ(A/B) = 1, it does not follow that 
ρ(A/B&C) = 1. That can fail when ρ(C/B) = 0. Thus, for example, 

  prob(2x is irrational/x is a real number) = 1 

but 
  prob(2x is irrational/x is a real number & x is rational) = 0. 

 That further assumptions are needed derives from the fact that the standard probability calculus 
is a calculus of singular probabilities rather than generic probabilities. A calculus of generic 
probabilities is related to the calculus of singular probabilities in a manner roughly analogous to the 
relationship between the predicate calculus and the singular calculus. Thus we get some principles 
pertaining specifically to relations that hold for generic probabilities but cannot even be formulated 
                                                
5  Probabilities relating n-place relations are treated similarly. I will generally just write the one-variable versions of 
various principles, but they generalize to n-variable versions in the obvious way. 
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in the standard probability calculus. For instance, Pollock (1990) endorsed the following two 
principles: 

Individuals: 
 prob(Fxy/Gxy & y = a) = prob(Fxa/Gxa)  

PPROB: 
 prob(Fx/Gx & prob(Fx/Gx) = r) = r. 

I will not use or assume either of these principles in this paper, but I mention them just to illustrate 
that there are reasonable-seeming principles governing generic probabilities that are not even well 
formed in the standard probability calculus. 
 What I do need in the present paper is three assumptions about proportions that go beyond 
merely imposing the standard axioms for the probability calculus. The three assumptions I will 
make are: 

Finite Set Principle: 
 For any set B, N > 0, and open formula Φ, 
 !

X
"(X)!/!X # B!&!# X = N( ) =    

   
  
!

x1 ,...,x
N

"({x1 ,...,x
N

})!/!x1 ,...,x
N

 are pairwise distinct!&!x1 ,...,x
N
#B( ) . 

Projection Principle: 
 If 0 ≤ p,q ≤ 1 and (∀y)(Gy → ρx(Fx/ Rxy)∈[p,q]), then ρx,y(Fx/ Rxy & Gy)∈[p,q].6 

Crossproduct Principle: 
 If C and D are nonempty, ! A " B,C " D( ) = !(A,C) # !(B,D).  

Note that these three principles are all theorems of elementary set theory when the sets in question 
are finite. For instance, the crossproduct principle holds for finite sets because #(A×B) = (#A)⋅(#B), 
and hence 

 

! A " B,C " D( ) =
#((A " B)# (C " D))

#(C " D)
=
#((A#C) " (B# D))

#(C " D)

=
#(A#C) $ #(B# D)

#C $ #D
=
#(A#C)

#C
$
#(B# D)

#D
= !(A,C) $ !(B,D).

 

My assumption is simply that ρ continues to have these algebraic properties even when applied to 
infinite sets. I take it that this is a fairly conservative set of assumptions. 
 I often hear the objection that in affirming the Crossproduct Principle, I must be making a 
hidden assumption of statistical independence. However, that is to confuse proportions with 
probabilities. The Crossproduct Principle is about proportions — not probabilities. For finite sets, 
proportions are computed by simply counting members and computing ratios of cardinalities. It 
makes no sense to talk about statistical independence in this context. For infinite sets we cannot just 
count members any more, but the algebra is the same. It is because the algebra of proportions is 
simpler than the algebra of probabilities that it is useful to axiomatize nomic probabilities indirectly 
by adopting axioms for proportions. 

2. The Statistical Syllogism 
 Pollock (1990) derived the entire epistemological theory of nomic probability from a single 
epistemological principle coupled with a mathematical theory that amounts to a calculus of nomic 
probabilities. The single epistemological principle that underlies probabilistic reasoning is the 
statistical syllogism. Although orthodox Bayesians would have us think otherwise, there are some 
                                                
6 Note that this is a different (and more conservative) principle than the one called “Projection” in Pollock (1990). 
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things that we simply believe, without attaching a probability to them. We often form beliefs on the 
basis of high generic probabilities. For example, I believe that today is March 31 because that is the 
date displayed on my watch. I do not believe that my watch is always right. At best, the generic 
probability is high of the date being as displayed on my watch, but that seems to be enough to 
justify me, at least provisionally (or defeasibly) in believing that this is March 31. This illustrates the 
use of the statistical syllogism. The statistical syllogism licenses inferences from high generic 
probabilities and singular propositions. Crudely, construing “most” as expressing a generic 
probability, the statistical syllogism has the form “Most A’s are B’s, and this is an A, so (defeasibly) 
this is a B.” I will use the following precise form of the statistical syllogism: 

Statistical Syllogism: 
If F is projectible with respect to G and r > 0.5, then  !Gc & prob(F/G) ≥ r !  is a defeasible 
reason for  !Fc ! , the strength of the reason being a monotonic increasing function of r. 

Throughout, I assume the theory of defeasible reasoning described in Pollock (1995, 2008a). 
However, most of the details will not matter for present purposes. 
 I take it that the statistical syllogism is a very intuitive principle, and it is clear that we employ it 
constantly in our everyday reasoning. Suppose, for example, that you read in the newspaper that 
George Bush is visiting Guatemala, and you believe what you read. What justifies your belief? No 
one believes that everything printed in the newspaper is true. What you believe is that certain kinds 
of reports published in certain kinds of newspapers tend to be true, and this report is of that kind. It 
is the statistical syllogism that justifies your belief. 
 The projectibility constraint in the statistical syllogism is the familiar projectibility constraint on 
inductive reasoning, first noted by Goodman (1955). Kyburg (1974) was the first to observe the 
need for some constraint on what properties the statistical syllogism can be applied to, although he 
did not initially identify the constraint with the standard projectibility constraint. One might wonder 
what projectibility has to do with the statistical syllogism. But it was argued in (Pollock 1990), on the 
strength of what were taken to be intuitively compelling examples, that the statistical syllogism 
must be so constrained. Furthermore, it was shown that without a projectibility constraint, the 
statistical syllogism is self-defeating, because for any intuitively correct application of the statistical 
syllogism it is possible to construct a conflicting (but unintuitive) application leading to a contrary 
conclusion. This is the same problem that Goodman first noted in connection with induction. 
Pollock (1990) then went on to argue that the reason the constraint on the statistical syllogism is the 
same as the one on induction is that principles of induction can be derived from the calculus of 
nomic probabilities with the aid of the statistical syllogism, so the projectibility constraint on 
induction derives from that on the statistical syllogism. The projectibility constraint is important, 
but also problematic because no one has a good analysis of it. I will not discuss it further here, but I 
will assume that it is satisfied in the places in which I use the statistical syllogism. 
 The statistical syllogism is a defeasible inference scheme, so it is subject to defeat. I now believe 
that the only primitive (underived) principle of defeat required for the statistical syllogism is that of 
subproperty defeat: 

Subproperty Defeat for the Statistical Syllogism: 
If H is projectible with respect to G, then  !Hc & prob(F/G&H) < prob(F/G) !  is an undercutting 
defeater for the inference by the statistical syllogism from  !Gc & prob(F/G) ≥ r !  to  !Fc ! .7 

In other words, information about c that lowers the probability of its being F constitutes a defeater. 
Note that if prob(Fx/G&H) is less than r but still high, one may still be able to make a weaker 
inference to the conclusion that Fc, but from the distinct premise  !Gc & prob(F/G& H) = s ! . 
 Pollock (1990) argued that we need additional defeaters for the statistical syllogism besides 
subproperty defeaters, and formulated several candidates for such defeaters. But one of the 
conclusions of the research described in this paper and in Pollock (2008) is that the additional 

                                                
7 There are two kinds of defeaters. Rebutting defeaters attack the conclusion of an inference, and undercutting defeaters 
attack the inference itself without attacking the conclusion. Here I assume some form of the OSCAR theory of defeasible 
reasoning (Pollock 1995). For a sketch of that theory see Pollock (2008a). 
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defeaters can all be viewed as derived defeaters, with subproperty defeaters being the only 
primitive defeaters for the statistical syllogism. 

3. Singular Probabilities 
 One of the central theses of the theory of nomic probability is that principles of direct inference 
can be derived as theorems from the calculus of nomic probabilities together with the statistical 
syllogism. This is a notable divergence from Kyburg (1974), who took the principles of direct 
inference to be primitive and used them to define singular probabilities. My approach is instead to 
define singular probabilities directly, in terms of nomic probabilities, and then prove a collection of 
mathematical theorems that show how to defeasibly infer the values of singular probabilities from 
the values of related nomic probabilities. 
 There is more than one kind of singular probability. “Objective chance” is a purely objective 
singular probability pertaining, for example, to chance events in quantum mechanics. In Pollock 
(1990) it was suggested that there is a theory of direct inference applicable to these probabilities, 
however in this paper I will focus instead on the application of direct inference to “mixed physical-
epistemic probabilities”. The probabilities used in practical deliberation must have a strong 
epistemic element. For example, if I am deciding whether to carry an umbrella when I go to work 
today, before looking outside I may know that the generic probability of rain in Tucson this time of 
year is only .05, and so I will conclude that it is extremely unlikely to rain today. But then I look out 
the window and see huge dark clouds looming overhead. At that point I conclude that rain is likely. 
This example illustrates that the probability I employ in deciding whether to carry an umbrella is 
partly a function of nomic probabilities, but it changes as my knowledge of the situation changes. I 
propose to capture this by identifying singular probabilities with a special class of generic 
probabilities. The present treatment is a generalization of that given in my (1984 and 1990).8 Let K  
be the conjunction of all the propositions the agent knows to be true, and let K  be the set of all 
physically possible worlds at which K  is true (“K-worlds”). I propose that we define the singular 
probability PROB(P) to be the proportion of K -worlds at which P is true. Where P is the set of all P-
worlds:  

  PROB(P) = ρ(P,K). 

More generally, where Q is the set of all Q-worlds, we can define: 

  If Q ∩ K ≠ ∅  then PROB(P/Q) = ρ(P, Q ∩ K). 

Formally, this is analogous to Carnap’s (1950,1952) logical probability, with the important 
difference that Carnap took ρ to be specified logically, whereas I take the identity of ρ to be a 
contingent fact. ρ is determined by the values of contingently true nomic probabilities, and their 
values are discovered by various kinds of statistical induction. 
 It turns out (and is proven in Pollock 2008) that singular probabilities, so defined, can be 
identified with a special class of nomic probabilities: 

Representation Theorem for Singular Probabilities: 
(1) PROB(Fa) = prob(Fx/x = a & K); 

(2) If it is physically necessary that [K  → (Q ↔ Sa1…an)] and that [(Q&K) → (P ↔ Ra1…an)], and Q 
is consistent with K , then PROB(P/Q) = prob(Rx1…xn/Sx1…xn & x1 = a1 & … & xn = an & K). 

(3) PROB(P) = prob(P & x=x/x = x & K). 

PROB(P) is a kind of “mixed physical/epistemic probability”, because it combines background 
knowledge in the form of K  with generic probabilities.9 
 The probability prob(Fx/x = a & K) is a peculiar–looking nomic probability. It is an generic 
probability, because “x” is a free variable, but the probability is only about one object. As such it 

                                                
8 Bacchus (1990) gave a somewhat similar account of direct inference, drawing on my 1983 and 1984. 
9 See chapter six of Pollock (2006) for further discussion of these mixed physical/epistemic probabilities. 
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cannot be evaluated by statistical induction or other familiar forms of statistical reasoning. 
However, as I will argue next, it can be evaluated using direct inference. 

4. Probable Probabilities 
 In Pollock (1990), I derived principles of direct inference from some very complex (and 
sometimes dubious) postulates about the proportion function ρ. However, I have recently found a 
much better way of proceeding. If we make just the simple and presumably uncontroversial 
assumptions about ρ that were enumerated in section one, we can prove some very general 
theorems about nomic probabilities that are of far-reaching importance. These are theorems about 
“probable probabilities”. If we know the probabilities of a few simple propositions, the probability 
calculus is generally too weak to allow us to compute more than rather broad bounds on the 
probabilities of logical compounds of those propositions. For example, suppose we know that 
PROB(P) = PROB(R) = .7 and PROB(Q) = PROB(S) = .6. What can we conclude about PROB(P & Q)? All 
the probability calculus enables us to infer is that .3 ≤ PROB(P & Q) ≤ .6. That does not tell us much. 
Similarly, all we can conclude about PROB(P ∨ Q) is that .7 ≤ PROB(P ∨ Q) ≤ 1.0. And all we can 
conclude about ((P & Q) ∨ (R & S)) is that .3 ≤ PROB((P & Q) ∨ (R & S)) ≤ 1.0. In general, the 
probability calculus imposes fairly weak constraints on the probabilities of logical compounds, but 
it falls far short of enabling us to compute unique values. But the theory of probable probabilities 
shows that, under very general circumstances, there are precisely computable values that we can 
defeasibly expect these unknown probabilities to have. The unknown probabilities are not logically 
guaranteed to have those values, but the sets of cases in which they do not are of measure 0. Among 
the consequences of these theorems about probable probabilities will be some principles of direct 
inference.  
 The fundamental theorems about probable probabilities are proven in Pollock (2008), so I will 
just state them here. Given a list of variables X1,…,Xn ranging over subsets of a set U, Boolean 
compounds of these sets are compounds formed by union, intersection, and set-complement. So, 
for example (X∪Y)–Z is a Boolean compound of X, Y, and Z. Linear constraints on the Boolean 
compounds either state the values of certain proportions, e.g., stipulating that ρ(X,Y) = r, or they 
relate proportions using linear equations. For example, if we know that X = Y∪Z, that generates 
the linear constraint 

 ρ(X,U) = ρ(Y,U) + ρ(Z,U) – ρ(X∩Z,U). 

Where “x
 

!!
"

 y” means that the absolute value of x-y is less than δ, my central theorem is the 
following purely combinatorial theorem about finite sets: 

Probable Proportions Theorem:  
Let U,X1,…,Xn be a set of variables ranging over sets, and consider a finite set LC of linear 
constraints on proportions between Boolean compounds  of those variables. If LC is consistent 
with the probability calculus, then for any pair of Boolean compounds P,Q of U,X1,…,Xn there is 
a real number r between 0 and 1 such that for  every ε,δ > 0, there is an N such that if U is finite 
and #U > N, then 

 
  
!

X1 ,...,Xn
!(P,Q) !"

#
r !/!LC!&!X

1
,...,X

n
$ U( ) % 1 & ' . 

This is a straightforward theorem of set theory, and it is proven in Pollock (2008). It is to be 
emphasized that this is just a mathematical theorem about finite sets, and does not depend upon 

any of our assumptions about ρ except for the assumption that for finite sets, 
  
!(X,Y) =

#X "Y

#Y
. 

This combinatorial theorem underlies all of the principles developed in this paper. 
 Given the rather simple assumptions I made about ρ in section one, we can use familiar-looking 
mathematics to prove (Pollock 2008): 



 8 

Law of Large Numbers for Proportions: 
 If B is infinite and ρ(A/B) = p then for every ε,δ > 0, there is an N such that 

 
  
!X !(A/X) !"

#
p!/!X $ B!&!X!is!finite!&!#X % N( ) % 1 & ' . 

Note that unlike Laws of Large Numbers for probabilities, the Law of Large Numbers for 
Proportions does not require an assumption of statistical independence. This is because it is derived 
from the crossproduct principle, and as remarked in section one, no such assumption is required (or 
even intelligible) for the crossproduct principle. 
 Given the law of large numbers for proportions, we can prove: 

Limit Principle for Proportions:  
Consider a finite set LC of linear constraints on proportions between Boolean compounds of a 
list of variables U,X1,…,Xn. For any real number r between 0 and 1, if for every ε,δ > 0, if there is 
an N such that for any finite set U such that #U > N, 

 
  
!X1 ,...,Xn

!(P,Q) !"
#

r !/!LC!&!X
1
,...,X

n
$ U( ) % 1 & ' , 

 then for any infinite set U, for every δ  > 0: 

  
  
!

X1 ,...,Xn
!(P,Q)!"

#
!r !/!LC!&!X

1
,...,X

n
$ U( ) = 1 . 

 Nomic probabilities are proportions among physically possible objects. For any property F that 
is not extraordinarily contrived, the set F of physically possible F’s will be infinite.10 Thus, given the 
limit principle for proportions, the Probable Proportions Theorem entails: 

Probable Probabilities Principle:  
Let U,X1,…,Xn be a set of variables ranging over properties and relations, and consider a finite 
set LC of linear constraints on probabilities between truth-functional compounds of those 
variables. If LC is consistent with the probability calculus, then for any pair of truth-functional 
compounds P,Q of U,X1,…,Xn there is a real number r between 0 and 1 such that for every δ > 0, 

 
   
prob

X1 ,...,Xn
prob(P/Q)!!

"
!r !/!LC!&!X1 ,...,X

n
7!U( ) = 1 . 

 Next note that we can apply the statistical syllogism to the probability formulated in the 
expectable probabilities principle (I assume without discussion that the projectibility constraint is 
satisfied). For every δ > 0, this gives us a defeasible reason for expecting that if LC then prob(P/Q) 
!
"

 r, and these conclusions jointly entail that prob(P/Q) = r. Thus we are led to a defeasible inference 
scheme: 

Expectable Probabilities Principle: 
Let U,X1,…,Xn be a set of variables ranging over sets, and consider a finite set LC of linear 
constraints on proportions between Boolean compounds  of those variables. Then for any pair 
of Boolean compounds P,Q of U,X1,…,Xn if r is a real number between 0 and 1 such that for  
every ε,δ > 0, there is an N such that if U is finite and #U > N, then 

 
  
!

X1 ,...,Xn
!(P,Q) !"

#
r !/!LC!&!X

1
,...,X

n
$ U( ) % 1 & ' , 

then for any properties X1,…,Xn it is defeasibly reasonable to expect that prob(P/Q) = r. 

I will refer to r as the expectable value of prob(P/Q). The Expectable Probabilities Principle establishes 
the existence of expectable values for probabilities under very general circumstances. 

                                                
10 The following principles apply only to properties for which there are infinitely many physically possible instances, 
but I will not explicitly include the qualification “non-contrived” in the principles.  



 9 

 The preceding principles tell us that expectable values exist.  It turns out that there is a general 
strategy for finding and proving theorems describing these expectable values, and I have written a 
computer program (in Common LISP) that will often do this automatically, both finding the 
theorems and producing human readable proofs. It can be downloaded from 
http://oscarhome.soc-sci.arizona.edu/ftp/OSCAR-web-page/CODE/Code for probable 
probabilities.zip. I will refer to this as the probable probabilities software. 
 To illustrate the power of the Expectable Probabilities Principle, I list a few instances of it. The 
proofs can be found in Pollock (2008), or obtained directly by running the aforementioned 
program. First, consider statistical independence. Probability practitioners almost invariably 
assufme (at least defeasibly) that probabilities are statistically independent unless they have some 
concrete reason for thinking otherwise. However, they often do so apologetically, because 
although such an assumption seems intuitively right, its justification has heretofore eluded the 
probability community. However, the theory of probable probabilities puts a defeasible 
assumption of statistical independence on a firm mathematical footing. Our first theorem about 
expectable values is: 

Principle of Expectable Statistical Independence: 
If prob(A/C) = r and prob(B/C) = s, the expectable value of prob(A&B/C) = r⋅s. 

This, I take it, explains the commonly held intuition that we should be able to assume statistical 
independence when we see no reason for thinking it fails. This is a purely mathematical justification 
of the defeasible assumption. 
 Perhaps more important for practical purposes, the theory of probable probabilities gives us the 
mathematical wherewithal to investigate the circumstances under which we should not assume 
statistical independence. These amount to defeaters for the principle of expectable statistical 
independence. The precise forms of these defeaters are not initially intuitively obvious, and some of 
them are rather surprising. Let us begin with a defeater that does have some claim to being 
intuitive, and turn to the less intuitive ones as we proceed. We can prove the following 
generalization of the principle of statistical independence: 

Principle of Statistical Independence with Overlap: 
If prob(A/C) = r, prob(B/C) = s, prob(D/C) = g, (A&C) 7 D, and (B&C) 7 D, then the expectable 

value of  prob(A&B/C) = 
 

r ! s

g
. 

To illustrate with a simple and intuitive case, suppose A = A0 & D and B = B0 & D. Given no reason 
to think otherwise, we would expect A0, B0, and D to be statistically independent. But then we 
would expect that 

 prob(A&B/C) = prob(A0&D&B0/C) = prob(A0/C) ⋅ prob(D/C) ⋅ prob(B0/C) 

   = 
  

prob(A0 & D/C) !prob(B0 & D/C)

prob(D/C)
= 

 

r ! s

g
. 

 The principle of statistical independence with overlap generates a defeater for the Principle of 
Expectable Statistical Independence.  The instance of the Probable Proportions Theorem that 
underlies the Principle of Statistical Independence is the following: 

 

   

prob
X ,Y ,Z

prob(X & Y /Z)!!
"
!r # s!/!

X,Y ,Z!7!U !and!prob(X/Z) = r !and!prob(Y /Z) = s

and!prob(X/U) = $ !and!prob(Y /U) = % !and!prob(Z/U) = &

'

(

)
)
)
)

*

+

,
,
,
,

= 1.  

On the other hand, the instance of the Probable Proportions Theorem that underlies the Principle of 
Statistical Independence with Overlap is: 
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probX ,Y ,Z,W

prob(X & Y /Z)!!
"
!
r # s
g
!/!

X,Y ,Z,W !7!U !and!prob(X/Z) = r !and!prob(Y /Z) = s

and!(X & Z)!7 W !and!(Y & Z)!7 !and!prob(W /Z) = g!and!prob(W /U) = $
and!prob(X/U) = % !and!prob(Y /U) = & !and!prob(Z/U) = '

(

)

*
*
*
*
**

+

,

-
-
-
-
--

= 1.  

The latter probability takes account of more information than the former, so it provides a 
subproperty defeater for the use of the statistical syllogism: 

Overlap Defeat for Statistical Independence:  
£(A&C) 7 D, (B&C) 7 D, and prob(D/C) ≠ 1· is an undercutting defeater for the inference 
from £prob(A/C) = r and prob(B/C) = s· to £prob(A&B/C) = r ⋅ s· by the Principle of Statistical 
Independence. 

 The principle of overlap defeat can seem surprising. Suppose you know that prob(A/C) = r and 
prob(B/C) = s, and are inclined to infer that prob(A&B/C) = r⋅s. As long as r,s < 1, there will always 
be a D such that (A&C) 7 D, (B&C) 7 D, and prob(D/C) ≠ 1. Does this mean that the inference is 
always defeated? It does not, but understanding why is a bit complicated. First, what we know in 
general is the existential generalization (∃D)[(A&C) 7 D and (B&C) 7 D and prob(D/C) ≠ 1]. But the 
defeater requires knowing of a specific such D. The reason for this is that it is not true in general 
that prob(Fx/Rxy) = prob(Fx/(∃y)Rxy). For example, let Fx be “x = 1” and let Rxy be “x < y & x,y are 
natural numbers ≤ 2”. Then prob(Fx/Rxy) = ⅓, but prob(Fx/(∃y)Rxy) = ½. Accordingly, we cannot 
assume that  

 

   

probX ,Y ,Z,W

prob(X & Y /Z)!!
"
!
r # s
g
!/!

X,Y ,Z,W !7!U !and!prob(X/Z) = r !and!prob(Y /Z) = s!and!

(X & Z)!7 W !and!(Y & Z)!7 !and!prob(W /Z) = g!and!prob(W /U) = $
and!prob(X/U) = % !and!prob(Y /U) = & !and!prob(Z/U) = '

(

)

*
*
*
*
**

+

,

-
-
-
-
--

 

 = 

   

probX ,Y ,Z

prob(X & Y /Z)!!
"
!
r # s
g
!/!

($W )($g)($% )[X,Y ,Z,W !7!U !and!prob(X/Z) = r !and!prob(Y /Z) = s!and

(X & Z)!7 W !and!(Y & Z)!7 !and!prob(W /Z) = g!and!prob(W /U) = %
and!prob(X/U) = & !and!prob(Y /U) = ' !and!prob(Z/U) = ( ]

)

*

+
+
+
+
++

,

-

.

.

.

.

..

 

and hence merely knowing that (∃D)[(A&C) 7 D and (B&C) 7 D and prob(D/C) ≠ 1] does not give 
us a defeater. In fact, it is a theorem of the calculus of nomic probabilities that if ,[B → C] then 
prob(A/B) = prob(A/B&C). So because 

 ,[(prob(A/C) = r and r,s < 1 and prob(B/C) = s)  
  → (∃D)(∃g)(∃ζ)[(A&C) 7 D and (B&C) 7 D and prob(D/C) = g and prob(D/U) = ζ]] 

it follows that  

 

   

probX ,Y ,Z

prob(X & Y /Z)!!
"
!
r # s
g
!/!

($W )($g)($% )[X,Y ,Z,W !7!U !and!prob(X/Z) = r !and!prob(Y /Z) = s!and

(X & Z)!7 W !and!(Y & Z)!7 !and!prob(W /Z) = g!and!prob(W /U) = %
and!prob(X/U) = & !and!prob(Y /U) = ' !and!prob(Z/U) = ( ]

)

*

+
+
+
+
++

,

-

.

.

.

.

..

 = 0. 
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Hence the mere fact that there always is such a D does not automatically give us a defeater for the 
application of the Principle of Statistical Independence. To get defeat, we must know of some specific 
D such that (A&C) 7 D and (B&C) 7 D and prob(D/C) ≠ 1. 
 In general, defeaters for expectable probability principles are defeaters for the instance of the 
statistical syllogism from which they are derived. These typically derive from conflicting expectable 
probabilities that take account of additional information. Another defeater is: 

Subproperty Defeat for Statistical Independence: 
£(B&C) 7 D 7 C and prob(A/D) = p ≠ r· is an undercutting defeater for the inference by the 
principle of statistical independence from £prob(A/C) = r & prob(B/C) = s· to £prob(A&B/C) = 

r⋅s·. 

 A principle that is actually equivalent (see Pollock 2008) to the principle of expectable statistical 
independence is: 

Nonclassical Direct Inference: 
If prob(A/B) = r, the expectable value of prob(A/B&C) = r. 

 The principle of nonclassical direct inference supports many defeasible inferences that seem 
intuitively reasonable but are not licensed by the probability calculus. For example, suppose we 
know that the probability of a twenty year old male driver in Maryland having an auto accident 
over the course of a year is .07. If we add that his girlfriend’s name is “Martha”, we do not expect 
this to alter the probability. There is no way to justify this assumption within a traditional 
probability framework, but it is justified by nonclassical direct inference. 
 Nonclassical direct inference should not be confused with ordinary (“classical”) direct inference. 
The latter licenses inferences from generic probabilities to singular probabilities, whereas 
nonclassical direct inference licenses inferences from generic probabilities to other generic 
probabilities. Nevertheless, as I will show in the next section, the two kinds of direct inference are 
closely related, and nonclassical direct inference provides the foundation for classical direct 
inference. 
 Because nonclassical direct inference is equivalent to the principle of expectable statistical 
independence, we get corresponding defeaters: 

Subproperty Defeat for Nonclassical Direct Inference: 
£B&C 7 D 7 B and prob(A/D) = s ≠ r· is an undercutting defeater for the inference by 
nonclassical direct inference from £prob(A/B) = r· to £prob(A/B&C) = r·. 

Overlap Defeat for Nonclassical Direct Inference:  
£A&B 7 G, C&B 7 G and prob(G/B) ≠ 1· is an undercutting defeater for the inference from 
£prob(A/B) = r· to £prob(A/B&C) = r· by Nonclassical Direct Inference. 

These principles will be of particular importance when we turn to classical direct inference. 
 

5. Direct Inference 
 In direct inference, we identify the value of a singular probability with the value of an associated 
generic probability. The basic idea is due to Reichenbach (1949). Letting KP mean “P is known”, I 
proposed in my (1983, 1990) that this can be captured with the following two principles: 

Classical Direct Inference: 
£KSa1…an and prob(Rx1…xn/ Sx1…xn & Tx1…xn) = r· is a defeasible reason for £PROB(Ra1…an / 

Ta1…an) = r·. 
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Subproperty Defeat for Classical Direct Inference: 
£S 7 V, KVa1…an, and prob(Rx1…xn/ Vx1…xn & Tx1…xn) ≠ r· is an undercutting defeater for 
the inference by classical direct inference from £Sa1…an is known and prob(Rx1…xn/ Sx1…xn & 
Tx1…xn) = r· to £PROB(Ra1…an / Ta1…an) = r·. 

For example, suppose we know that Herman is an adult male of Slavic descent, and the generic 
probability of such a person being lactose intolerant is .35. By classical direct inference, we have a 
defeasible reason for expecting that PROB(Herman is lactose intolerant) = .35. But suppose we also 
know that Herman tests positive on a test for lactose intolerance, and the generic probability of an 
adult male of Slavic descent who tests positive on that test being lactose intolerant is .85. That gives 
us a subproperty defeater for the first inference, and a new defeasible reason for expecting that 
PROB(Herman is lactose intolerant) = .85. That is the intuitively right inference to make. 
 In light of the theory of probable probabilities, both the principle of classical direct inference and 
the principle of subproperty defeat for classical direct inference are theorems of the theory of nomic 
probability. They need not be independently postulated. By the representation theorem for 
singular probabilities,  

 PROB(Ra1…an / Ta1…an) = prob(Rx1…xn/Sx1…xn & x1 = a1 & … & xn = an & K). 

But the principle of non-classical direct inference gives us a defeasible reason for expecting that if 
prob(Rx1…xn/ Sx1…xn & Tx1…xn) = r then prob(Rx1…xn/Sx1…xn & x1 = a1 & … & xn = an & K) = r. 
Thus we get the principle of classical direct inference. And the principle of subproperty defeat for 
classical direct inference then becomes the same thing as subproperty defeat for this instance of 
non-classical direct inference. 
 In my (1990), I suggested that a full theory of direct inference requires some additional defeaters 
over and above subproperty defeat. Kyburg (1974) made similar observations. I will explore some 
of these in the next section, but first note that from overlap defeat for non-classical direct inference, 
we get a defeater for classical direct inference that has previously been overlooked in the literature 
on direct inference: 

Overlap Defeat for Classical Direct Inference: 
The conjunction of 

(i)  Rx1…xn & Sx1…xn & Tx1…xn 7 Gx1…xn and 
(ii) K(Sa1…an & Ta1…an & Ga1…an) and 
(iii) prob(Gx1…xn/ Sx1…xn & Tx1…xn) ≠ 1 

is an undercutting defeater for the inference by classical direct inference from £KSa1…an and 
prob(Rx1…xn/ Sx1…xn & Tx1…xn) = r· to £PROB(Ra1…an / Ta1…an) = r·. 

 

 Because singular probabilities are generic probabilities in disguise, we can also use nonclassical 
direct inference to infer singular probabilities from singular probabilities. Thus £PROB(P/Q) = r· 
gives us a defeasible reason for expecting that PROB(P/Q&R) = r. We can employ principles of 
statistical independence similarly. For example, £PROB(P/R) = r & PROB(Q/R) = s· gives us a 
defeasible reason for expecting that PROB(P&Q/R) = r⋅s. 
 Thus the theory of direct inference gets a firm mathematical foundation. Nothing has to be 
independently postulated. It consists entirely of a set of theorems derived from the calculus of 
nomic probabilities and the statistical syllogism. As we will see in the next section, however, there 
are some important complications that remain to be explored. 

6. The Y-Function 
 Although direct inference is occasionally useful, very often it cannot be used because we know 
too much. Suppose we have two seemingly unrelated diagnostic tests for a disease, and Bernard 
tests positive on both tests. We know that the probability of his having the disease if he tests 
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positive on the first test is .8, and the probability if he tests positive on the second test is .75. But 
what should we conclude about the joint probability of his having the disease if he tests positive on 
both tests? The probability calculus gives us no guidance here. It is consistent with the probability 
calculus for the joint probability to be anything from 0 to 1. Nor does direct inference help. Direct 
inference gives us one reason for thinking that the probability of Bernard having the disease is .8, 
and it gives us a different reason for drawing the conflicting conclusion that the probability is .75. It 
gives us no way to combine the information. Intuitively, it seems that the probability of his having 
the disease should be higher if he tests positive on both tests. But how can we justify this? 
 This is a general problem for theories of both classical and nonclassical direct inference. When 
we have some conjunction  !G1 &…& Gn !  of properties and we want to know the value of 
prob(F/G1 &…& Gn), if we know that prob(F/G1) = r and we don’t know anything else of relevance, by 
nonclassical direct inference we can infer defeasibly that prob(F/G1 &…& Gn) = r. Similarly, if we 
know that an object a has the properties G1,…,Gn and we know that prob(F/G1) = r and we don’t 
know anything else of relevance, by classical direct inference we can infer defeasibly that PROB(Fa) = r. 
The difficulty is that we usually know more. We typically know the value of prob(F/Gi) for some i 
≠ 1. If prob(F/Gi) = s ≠ r, we have defeasible reasons for both  !prob(F/G1 &…&Gn) = r !  and 
 !prob(F/G1 &…&Gn) = s ! , and also for both  !PROB(Fa) = r !  and  !PROB(Fa) = s ! . As these 
conclusions are incompatible they all undergo collective defeat. Thus the standard theory of direct 
inference leaves us without a conclusion to draw. 
 Knowledge of generic probabilities would be vastly more useful in real application if there were 
a function Y(r,s) such that, in a case like the above, when prob(F/G) = r and prob(F/H) = s, we could 
defeasibly expect that prob(F/G&H) = Y(r,s), and hence (by nonclassical direct inference) that 
PROB(Fa) = Y(r,s). We might call this computational inheritance, because it computes a new value for 
PROB(Fa) from previously known generic probabilities. Classical direct inference, by contrast, is a 
kind of “noncomputational inheritance”. It is direct in that PROB(Fa) simply inherits a value from a 
known generic probability. Although this might not seem entirely appropriate, I will use the 
generic term “direct inference” to include both classical direct inference and computational 
inheritance, and any other inferences from generic probabilities to singular probabilities. I will call 
the function used in computational inheritance “the Y-function” because its behavior would be as 
diagrammed in figure 1. 
 

prob(F/G) = r      prob(F/H) = s 
 
 
 
 
 
 

prob(F/G&H) = Y(r,s) 
 
 

Figure 1. The Y-function 

 It has generally been assumed that there is no such function as the Y-function (Reichenbach 
1949). Certainly, there is no function Y(r,s) such that we can conclude deductively that if prob(F/G) = 
r and prob(F/H) = s then prob(F/G&H) = Y(r,s). For any r and s that are neither 0 nor 1, 
prob(F/G&H) can take any value between 0 and 1. However, that is equally true for nonclassical 
direct inference. That is, if prob(F/G) = r we cannot conclude deductively that prob(F/G&H) = r. 
Nevertheless, that will tend to be the case, and we can defeasibly expect it to be the case. Might 
something similar be true of the Y-function? That is, could there be a function Y(r,s) such that we 
can defeasibly expect prob(F/G&H) to be Y(r,s)? It follows from the Probable Probabilities 
Theorem that the answer is “Yes”. It is more useful to begin by looking at a three-place function 
rather than a two-place function. Let us define:  

 Y(r,s:a) = rs(1! a)

a(1! r ! s) + rs
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I use the non-standard notation “Y(r,s:a)” rather than “Y(r,s,a)” because the first two variables will 
turn out to work differently than the last variable. 
 The probable probabilities theorem implies that there are expectable values for joint 
probabilities, and the following theorem (proven in Pollock 2008, and also provable automatically 
using the probable probabilities software) shows what they are: 

Y-Principle:  
If B,C 7 U, prob(A/B) = r, prob(A/C) = s, and prob(A/U) = a, then the expectable value of 
prob(A/B & C) = Y(r,s:a), and B and C are expectably independent of both A and ~A. 

 To get a better feel for what the principle of computational inheritance tells us, it is useful to 
examine plots of the Y-function. Figure 2 illustrates that Y(r,s:.5) is symmetric around the right-
leaning diagonal. 

 
 

Figure 2. Y(z,x:.5), holding z constant 
(for several choices of z as indicated in the key). 

Varying a has the effect of warping the Y-function up or down relative to the right-leaning 
diagonal. This is illustrated in figure 3 for several choices of a.  
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Figure 3. Y(z,x:a) holding z constant (for several 
choices of z), for a = .7, a = .3, a = .1, and a = .01. 

 The Y-function has a number of important properties. In particular, it is important that the Y-
function is commutative and associative in the first two variables: 

Theorem 1: Y(r,s:a) = Y(s,r:a). 

Theorem 2: Y(r,Y(s,t:a):a) = Y(Y(r,s:a),t:a). 

 Theorems 1 and 2 are very important for the use of the Y-function in computing probabilities. 
Suppose we know that prob(A/B) = .6, prob(A/C) = .7, and prob(A/D) = .75, where B,C,D 7 U and 
prob(A/U) = .3. In light of theorems 1 and 2 we can combine the first three probabilities in any 
order and infer defeasibly that prob(A/B&C&D) = Y(.6,Y(.7,.75:.3):.3) = Y(Y(.6,.7:.3),.75:.3) = .98. 
This makes it convenient to extend the Y-function recursively so that it can be applied to an 
arbitrary number of arguments (greater than or equal to 3): 

 If n ≥ 3, Y(r1,…,rn:a) = Y(r1,Y(r2,…,rn:a) :a). 

Then we can then strengthen the Y-Principle as follows:  

Compound Y-Principle: 
If B1,…,Bn 7 U, prob(A/B1) = r1,…, prob(A/Bn) = rn, and prob(A/U) = a, the expectable value of 
prob(A/ B1 &…& Bn & C) = Y(r1,…,rn:a). 

 If we know that prob(A/B) = r and prob(A/C) = s, we can also use nonclassical direct inference 
to infer defeasibly that prob(A/B&C) = r. If s ≠ a, Y(r,s:a) ≠ r, so this conflicts with the conclusion 
that prob(A/B&C) = Y(r,s:a). However, as above, the inference described by the Y-principle is 
based upon a probability with a more inclusive reference property than that underlying 
Nonclassical Direct Inference (that is, it takes account of more information), so it takes precedence 
and yields an undercutting defeater for Nonclassical Direct Inference: 

Y-Defeat for Nonclassical Direct Inference: 
£A,B,C 7 U and prob(A/C) ≠ prob(A/U)· is an undercutting defeater for the inference from 
£prob(A/B) = r· to £prob(A/B&C) = r· by Nonclassical Direct Inference. 

It follows that we also have defeater for the principle of statistical independence: 
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Y-Defeat for Statistical Independence: 
£A,B,C 7 U and prob(A/B) ≠ prob(A/U)· is an undercutting defeater for the inference from 

£prob(A/B) = r & prob(A/C) = s· to £prob(A&B/C) = r⋅s· by Statistical Independence. 

 The Y-principle makes knowledge of generic probabilities useful in ways it was never 
previously useful. It tells us how to combine different probabilities that would lead to conflicting 
direct inferences and still arrive at a univocal value. Consider Bernard again, who has symptoms 
suggesting a particular disease, and tests positive on two independent tests for the disease. Suppose 
the probability of a person with those symptoms having the disease is .6. Suppose the probability 
of such a person having the disease is they test positive on the first test is .7, and the probability of 
their having the disease if they test positive on the second test is .75. What is the probability of their 
having the disease if they test positive on both tests? We can infer defeasibly that it is Y(.7,.75:.6) = 
.875. We can then apply classical direct inference to conclude that the probability of Bernard’s 
having the disease is .875. This is a result that we could not have gotten from the probability 
calculus alone or from classical direct inference alone. Similar reasoning will have significant 
practical applications. 
 Joseph Halpern has pointed out to me (in correspondence) that in the special case in which the 
base rate is .5, the Y-principle is equivalent to Dempster’s “rule of composition” for belief functions 
(Shafer 1976).11 However, by ignoring the base rate prob(A/U) (setting it equal to .5 by default), the 
Dempster-Shafer theory will often give intuitively incorrect results. For example, in the case of the 
two tests for the disease, two positive tests should increase that probability. But let us change the 
probabilities in the example and suppose that the base rate is .3, and each positive test individually 
confers a probability of .4 that the patient has the disease. Two positive tests should increase that 
probability further. Indeed, Y(.4,.4:.3) = .5. However, Y(.4,.4:.5) = .3, so if we ignore the base rate, 
two positive tests would lower the probability of having the disease instead of raising it.  
 Again, because singular probabilities are generic probabilities in disguise, we can apply 
computational inheritance to them as well and infer defeasibly that if PROB(P) = a, PROB(P/Q) = r, and 
PROB(P/R) = s then PROB(P/Q&R) = Y(r,s:a). 
 The Y-Principle itself has defeaters. Let us define: 
 

B and C are Y-independent for A relative to U iff A,B,C 7 U and 
 (a) prob(C/B&A) = prob(C/A) 
and 
 (b) prob(C/B&~A) = prob(C/U&~A). 

The Y-principle derives from a defeasible assumption of Y-independence. The following theorem 
was proven in Pollock (2008): 

Y-Theorem:  
Let r = prob(A/B), s = prob(A/C), and a = prob(A/U). If B and C are Y-independent for A 
relative to U then prob(A/B&C) = Y(r,s:a). 

 Somewhat surprisingly, it follows from the probability calculus that when prob(C/A) ≠ 
prob(C/U) and prob(B/A) ≠ prob(B/U), Y-independence conflicts with ordinary independence 
(Pollock 2008): 
 
Theorem 3: If B and C are Y-independent for A relative to U and prob(C/A) ≠ prob(C/U) and 

prob(B/A) ≠ prob(B/U) then prob(C/B) ≠ prob(C/U). 

 Theorem 3 seems initially surprising, because we have an initial defeasible assumption of 
independence for B and C relative to all three of A, U&~A, and U. Theorem 3 tells us that if A is 
statistically relevant to B and C then we cannot have all three. However, this situation is 

                                                
11 See also Bacchus et al (1996). Given very restrictive assumptions, their theory gets the special case of the Y-Principle in 
which a = .5, but not the general case. 
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commonplace. Consider the example of two sensors B and C sensing the presence of an event A. 
Given that one sensor fires, the probability of A is higher,  but raising the probability of A will 
normally raise the probability of the other sensor firing. So B and C are not statistically independent 
relative to U. However, knowing whether an event of type A is occurring screens off the effect of 
the sensors on one another. For example, knowing that an event of type A occurs will raise the 
probability of one of the sensors firing, but knowing that the other sensor is firing will not raise 
that probability further. So prob(B/C&A) = prob(B/A) and prob(B/C&~A) = prob(B/U&~A). 
 The defeasible presumption of Y-independence for A is based upon a probability that takes 
account of more information than the probability grounding the defeasible presumption of 
statistical independence relative to U, so the former takes precedence. In other words, in light of 
theorem 3, we get a defeater for Statistical Independence whenever we have an A 7 U such that 
prob(A/C) ≠ prob(A/U) and prob(A/B) ≠ prob(A/U): 

Y-Defeat for Statistical Independence: 
£prob(A/C) ≠ prob(A/U) and prob(A/B) ≠ prob(A/U)· is an undercutting defeater for the 
inference from £prob(A/C) = r and prob(B/C) = s· to £prob(A&B/C) = r ⋅ s· by the Principle of 
Statistical Independence. 

7. An Example 
 The mathematics underlying the Y-Principle is compelling. It makes it reasonable to expect that 
joint probabilities can usually be computed using the Y-function. However, although this is a 
reasonable expectation, it is not logically guaranteed to yield the right answer. So it seems wise to 
test this prediction on a concrete example. To generate a simple database I could use for this 
purpose, I pressed some of my colleagues and students into service as detectors. I generated 100 
paragraphs each consisting of a list of 100 words. The word “box” occurred in 40 of the paragraphs, 
and the word “cat” appeared in 35. A subject was shown the 100 paragraphs sequentially, and 
given 5 seconds to scan each paragraph, looking for the words “box” and “cat”. I used subjects as 
detectors for the absence of these words. If a subject fails to see either word, there will be some 
probability that the word is absent from the paragraph, and we can estimate that probability on the 
basis of the data we collect. So for each subject S (each detector), we can estimate prob(not-cat/not-
S-see-cat) and prob(not-box/not-S-see-box). 
 Now consider pairs of subjects (pairs of detectors) S1 and S2. All subjects see the same 
paragraphs, so we can also use the data to estimate the joint probabilities prob(not-cat/not-S1-see-
cat & not-S2-see-cat) and prob(not-box/not-S1-see-box& not-S2-see-box) that a word is absent given 
that neither subject sees it. We know the base rates of the absence of “box” and “cat”, viz., .6 and 
.65. So, for each pair of subjects S1 and S2, we can compare the measured joint probability 

 prob(not-cat/not-S1-see-cat & not-S2-see-cat) 

with the predicted joint probability 

 Y(prob(not-cat/not-S1-see-cat),prob(not-cat/not-S2-see-cat) :.65), 

and we can compare the measured joint probability 

 prob(not-box/not-S1-see-box& not-S2-see-box) 

with the predicted joint probability 

 Y(prob(not-box/not-S1-see-box),prob(not-box/not-S2-see-box) :.6). 

 I used 13 subjects, which generates 78 pairs of subjects and two data points for each pair of 
subjects (one for “cat” and one for “box”). The data points consist of measured relative frequencies, 
from which we can estimate the corresponding probabilities. The mean of the ratio of the measured 
joint relative frequency to the joint probability predicted by the Y-function was 0.995, with a mean 
deviation of 0.013. I take this as strong confirmation of the correctness of the use of the Y-Principle 
to estimate the joint probabilities in this example. 
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8. The Generalized Y-Theorem 
 A slight generalization of the proof of the Y-Theorem produces: 

Generalized-Y-Theorem:  

Suppose A,B,C 7 U. Let r = prob(A/B), s = prob(A/C), a = prob(A/U), α = 
  

prob(C/B & A)

prob(C/A)
, and 

β = 
  

prob(C/B& ~ A)

prob(C/U& ~ A)
. Then prob(A/B&C) = 

  

1

1 +
!a(1 " r " s + rs)

#(1 " a)rs

. 

Let us define: 

 GY(r,s:a,α,β) = 

  

1

1 +
!a(1 " r " s + rs)

#(1 " a)rs

. 

Trivially: 

 Y(r,s:a) =

  

1

1 +
a(1 ! r ! s + rs)

(1 ! a)rs

. 

Thus prob(A/B&C) = Y(r,s:a) iff α = β. 

 In general, GY(r,s:a,α,β) > Y(r,s:a) iff β < α. Therefore: 

Y-Relevance-Theorem:  

Suppose A,B,C 7 U. Let r = prob(A/B), s = prob(A/C), a = prob(A/U), α = 
  

prob(C/B & A)

prob(C/A)
, and 

β = 
  

prob(C/B& ~ A)

prob(C/U& ~ A)
. Then: 

(a) If α < 1 and β ≥ 1 then prob(A/B&C) < Y(r,s:a); 

(b) If α > 1 and β ≤ 1 then prob(A/B&C) > Y(r,s:a); 

(c) If α ≥ 1 and β < 1 then prob(A/B&C) > Y(r,s:a). 

 The Y-Principle derives from the fact that, given that r = prob(A/B), s = prob(A/C), and a = 
prob(A/U), the expectable values of α and β are both 1. Thus if we have a reason for believing that 
one of α or β is not equal to 1, but know nothing about the other, this gives us a reason for 
expecting that prob(A/B&C) ≠ Y(r,s:a), and so constitutes a defeater for the use of the Y-Principle. 
We get defeaters corresponding to each of cases (a), (b), and (c) of the Y-Relevance-Theorem. 
 In case (a), B is “negatively Y-relevant to C for A”, and B is not positively Y-relevant to C for ~A. 
In this case, prob(A/B&C) cannot be computed as Y(r,s:a). Y(r,s:a) provides only an upper bound 
on prob(A/B&C). To illustrate this, let us distinguish between cases in which prob(A/B) and 
prob(A/C) reflect informational connections and cases in which they reflect causal connections. 
Examples of informational connections include diagnostic relations in medicine, sensors sensing 
remote events, and so forth. In these cases, B does not cause A (e.g., the results of the test do not 
cause the disease). Rather, the direction of causation is from A to B (the disease causes the test to 
have certain results). If the connections are informational then it is usually reasonable to expect Y-
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independence. But in causal cases, this is not a reasonable expectation. Suppose B and C both have a 
tendency to cause A. For example, poisoning a person and shooting him may both have a tendency 
to cause his death. In this case, we should not expect Y-independence to hold. Knowing that a 
person dies presumably raises the probability of his having been poisoned, but if we know that he 
was shot and died, this would raise the probability of his having been poisoned to a lesser degree (if 
at all). In general, if B and C are probabilistic causes of A, we would expect that prob(C/B&A) < 
prob(C/A). On the other hand, it still seems that we should expect that prob(C/B&~A) = 
prob(C/U&~A). For instance, a person’s not dying lowers the probability that he was poisoned, 
and it seems to do so just as much if we know he was shot. So this is a case of type (a), and all we 
can reasonably expect is that prob(A/B&C) < Y(r,s:a). 
 Informational cases are sometimes of types (b) or (c). For instance, suppose we have two 
sensors B and C detecting remote events of type A. But suppose there are two subtypes of events 
of type A — types A1 and A2 — where events of type A1 are more easily detected by the sensors 
than are events of type A2. Then if one sensor detects an event, that raises the probability that it is 
of type A1, and so raises the probability that the other sensor will also detect it. In other words, α > 
1. Similarly, there could be a class of cases in which the sensors are more likely to register false 
positives. In that case, β < 1. 
 In all of these latter cases, we should not expect Y-independence, and so should not use the Y-
Principle to estimate the value of prob(A/B&C) directly. However, in the latter two cases we can still 
use the Y-Principle to estimate the value of prob(A/B&C) indirectly. Consider the first sort of case. 
By the probability calculus: 

 prob(A/B&C) = prob(A1/B&C) + prob(A2/B&C). 

If we know the values of prob(A1/B), prob(A1/C), prob(A2/B), and prob(A2/C), we can use the Y-
Principle to compute values for prob(A1/B&C) and prob(A2/B&C), and then sum them to estimate 
prob(A/B&C).  
 Instead of having different kinds of A’s, we might have different circumstances in which the 
reliability of the sensors vary. For instance, if we can partition the circumstances into two subcases 
S1 and S2, we can compute 

 prob(A/B&C) = prob(A/B&C&S1)⋅prob(S1/B&C) + prob(A/B&C&S2)⋅prob(S2/B&C). 

Then if we know the values of prob(A/B&S1), prob(A/C&S1), prob(A/B&S2), and prob(A/C&S2), 
we can use the Y-Principle to compute values for prob(A/B&C&S1) and prob(A/B&C&S2), and then 
use those to estimate prob(A/B&C). 
 In this way, we can often restore Y-independence by dividing cases. We can also have cases in 
which some continuous parameter affects the detectability of an event. For instance, in the “box” 
and “cat” cases, we could vary the amount of time subjects have for scanning a paragraph. This 
kind of case can be handled similarly to the above using probability distributions. 
 

9. The Y0-function 
 The application of the Y-function presupposes that we know the base rate prob(A/U). But 
suppose we do not. Then what can we conclude about prob(A/B&C)? I originally suspected that we 
could assume by default that prob(A/U) = .5, and so conclude that prob(A/B&C) = Y(r,s:.5). That 
would be interesting because, as remarked above, this is equivalent to Dempster’s “rule of 
composition” for belief functions (Shafer 1976). As I illustrated in section six, if we know the value 
of prob(A/U) but ignore it, we will often get intuitively incorrect results by using the Dempster-
Shafer rule. But if we do not know the value of prob(A/U), can we assume it is .5? It turns out that 
even when we are ignorant of the base rate, the Dempster-Shafer rule does not give quite the right 
answer. The difficulty is that knowing the values of prob(A/B) and prob(A/C) affects the expectable 
value of prob(A/U). Let us define Y0(r,s) to be Y(r,s:a) where a is the solution to the following set of 
three simultaneous equations (for variable a, b, and c, and fixed r and s): 

 2a
3
! (b + c ! 2b " r ! 2c " s ! 3)a

2

!!!+(b " c + 2b " r ! b " cr + 2c " s ! b " c " s + 2b " c " r " s ! b ! c +1)a ! b " c " r " s = 0;
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 1! s
1+ (s ! a)c

"
#$

%
&'

1!s
s

a ! s ( c
"
#$

%
&'
s

= 1 ; 

 1! r
1+ (r ! a)b

"
#$

%
&'

1!r
r

a ! r (b
"
#$

%
&'
r

= 1 . 

 

Then we have the following principle (Pollock 2008): 

Y0-Principle:  
If prob(A/B) = r and prob(A/C) = s, then the expectable value of prob(A/B & C) = Y0(r,s). 

If a is the expectable value of prob(A/U) given that prob(A/B) = r and prob(A/C) = s, then Y0(r,s) = 
Y(r,s:a). However, a does not have a simple analytic characterization. Y0(r,s) is plotted in figure 4, 
and the default values of prob(A/U) are plotted in figure 5. Note how the curve for Y0(r,s) is twisted 
with respect to the curve for Y(r,s:.5) (in figure 2). 

 

      
 

 Figure 4. Y0(r,s), holding s constant (for Figure 5. Default values of prob(A/U) (for 
 several choices of s as indicated in the key) several choices of s as indicated in the key) 
 

10. Domination Defeat 
 In Pollock (1990), it was observed that there are cases in which we make direct inferences that 
cannot be justified solely on the basis of the principles of classical direct inference and subproperty 
defeat. In a statistical investigation of the cause of some kind of event (for instance, a person's 
getting cancer), scientists discover many factors to be irrelevant. For example, the color of one's 
hair is irrelevant to the probability of getting lung cancer. More precisely, the incidence of lung 
cancer among residents of the United States is the same as the incidence of lung cancer among 
redheaded residents of the United States: prob(C/U) = prob(C/R) = .1.  It has also been found that 
the incidence of lung cancer among residents of the United States who smoke is much greater:  
prob(C/S) = .3.  If we know that Charles is a redheaded resident of the United States who smokes, 
we will estimate his chances of getting lung cancer to be .3 rather than .1.  But this cannot be 
justified in terms of classical direct inference and subproperty defeat.  We have two different 
defeasible reasons for concluding that PROB(Cc) = .1: 
 

(1) prob(C/R) = .1 & KRc 
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and 
 

(2) prob(C/U) = .1 & KUc; 
 
and one defeasible reason for concluding that PROB(Cc) = .3: 
 

(3) prob(C/S) = .3 & KSc. 
 
Because S 7 U, (3) provides a subproperty defeater for the inference from (2), but we do not have a 
subproperty defeater for the inference from (1).  Accordingly, (1) and (3) support conflicting direct 
inferences and hence defeat one another, leaving us with no undefeated direct inference. 
 We should be able to make a direct inference to the conclusion that prob(Cc) = .3, ignoring (1).  
What justifies this intuitively is that we have found that being redheaded is irrelevant to the 
probability of getting lung cancer.  Because it is irrelevant, we regard (2) as true only because (1) is 
true, and hence take any defeater for a direct inference from (1) to be a defeater for a direct inference 
from (2) as well.  In Pollock (1990) I suggested that this can be captured as follows: 
 

£prob(C/R) = prob(C/U) & R 7 U·
  is an undercutting defeater for the direct inference from  

prob(C/R) = r & K(Rc)  to  prob(Cc) . 
 
I called these defeaters domination defeaters. Their application can be diagrammed as in figure 6, 
where the bold red arrow indicates a defeat relation. 
 

   (1) KUc & prob(C/U) = r 

         (3) KSc & prob(C/S) = s ≠ r 

 

                     (2) KRc & prob(C/R) = r 

 

             domination defeat? 

                         PROB(Cc) = r    PROB(Cc) = s 
 

Figure 6. Domination defeat 
 

 In Pollock (1990), I suggested that defeaters of a similar structure were required for the statistical 
syllogism, and then domination defeaters for direct inference could be derived from those for the 
statistical syllogism. However, I saw no way to derive domination defeaters for the statistical 
syllogism from anything else, so they seemed to be a genuinely new kind of defeater that had to be 
postulated in addition to subproperty defeaters for the statistical syllogism. It now turns out, 
however, that domination defeaters for both the statistical syllogism and direct inference can be 
derived from the Y-principle, without the need to postulate new primitive defeaters. In Pollock 
(2008), I showed that domination defeaters for the statistical syllogism can be derived from the Y-
principle, so domination defeaters for direct inference could be justified indirectly on that basis. 
However, as I will now show, they can also be derived directly from the Y-principle. This is 
because, by the Y-principle, if prob(C/U) = r, prob(C/S) = s, and prob(C/R) = r, we can infer 
defeasibly that prob(C/U&R&S) = Y(s,r:r) = s, as diagramed in figure 7. This gives us a subproperty 
defeater for the inference from (2) to the conclusion that PROB(Cc) = r, and leaves the inference 
from (3) to the conclusion that PROB(Cc) = s undefeated. 

 



 22 

       KUc & prob(C/U) = r    KSc & prob(C/S) = s ≠ r 

          

          
               
 

    KRc & prob(C/R) = r 

 

  PROB(Cc) = r  K(Uc&Rc&Sc) & prob(C/U&R&S) = Y(s,r:r) = s 
 

            PROB(Cc) = s 
 

Figure 7. Reconstructing Domination Defeat 
 

11. Projectibility and Disjunctive Reference Properties 
 In Pollock (1990), it was argued that principles of direct inference, classical direct inference, and 
subproperty defeat, all require projectibility constraints analogous to those required by statistical 
syllogism and subproperty defeat for statistical syllogism. This was defended by appeal to some 
well known problems for existing theories of direct inference. To get these constraints, I made 
some ad hoc assumptions about the projectibility of the properties to which statistical syllogism is 
applied in generating the principles of expectable values. However, I no longer believe that such 
projectibility constraints are required. In this section and the next, I will re-examine two problems 
that I previously took to motivate the need for projectibility constraints. 

  The first is “the problem of disjunctive reference properties”, due originally to Kyburg (1974), 
and discussed further in Pollock (1990). See also Thorn (2007). Suppose we know that prob(A/D) = s, 
prob(A/C) = r, and we know that Bc and Dc, but we do not know the value of prob(A/B). It seems 
that we should conclude defeasibly that PROB(Ac) = s. The value of prob(A/C) should be irrelevant, 
because we have no reason to believe that Cc. This seems initially to be in accordance with our 
theory. By the definition of singular probabilities, in this case, PROB(Ac) = prob(A/B&D), and by 
nonclassical direct inference we can infer defeasibly that prob(A/B&D) = prob(A/D) = r.  
 However, although we do not know that Cc, we can infer deductively from Bc that (Bc ∨ Cc). 
Furthermore, although we can expect defeasibly that prob(A/B) = prob(A/U), we would not expect 
that prob(A/B ∨ C) = prob(A/U). In fact, it follows from the probability calculus that if prob(A/C) ≠ 
prob(A/B) and prob(C/B ∨ C) ≠ 0, then prob(A/B ∨ C) ≠ prob(A/B) = a. This seems to give us a 
subproperty defeater for the nonclassical direct inference that prob(A/B&D) = prob(A/D) = s, and 
hence for the classical direct inference that PROB(Ac) = s. Because all we know about prob(A/B ∨ C) 
follows from what we know about prob(A/C), this should be irrelevant to the value of 
prob(A/B&D). 
 In Pollock (1990), I took this to illustrate the need for a projectibility constraint on both direct 
inference and subproperty defeat. Because projectibility is not closed under disjunction (Pollock, 
1990), this would block the appeal to prob(A/B ∨ C) in generating a subproperty defeater. 
However, it follows from the theory of probable probabilities that there is an easier solution to this 
problem. If we know that prob(A/D) = s and prob(A/C) = r, prob(A/B ∨ C) itself has an expectable 
value. In fact, running the probable probabilities software produces the following result: 
 
======================================================== 
Dividing U into 4 subsets A,B,C,D,  if the following constraints are satisfied: 
 prob(A / C) = r 
 prob(A / D) = s 
 prob(A / U) = a 
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 prob(B / U) = b 
 prob(C / U) = c 
 prob(D / U) = d 
and the values of a, b, c, d, s, r are held constant, the following characterizations were found for the expectable values 
of the probabilities wanted: 
---------- 
prob(A / (B ∨ C)) = ((((r * c) + (a * b)) - (b * r * c)) / ((c + b) - (b * c))) 
---------- 
prob(A / C) = a 
---------- 
prob(A / (C & D)) = s 
---------- 
======================================================== 

As we have seen, if prob(A/B ∨ C) = v, v will normally be different from prob(A/B). But as long as v 
is the expectable value for prob(A/B ∨ C), the probability is 1 that prob(A/B ∨ C) = v given that 
prob(A/C) = r and prob(A/D) = s, and accordingly the probability (1) of prob(A/B&D) having any 
particular value given that prob(A/C) = r and prob(A/D) = s is the same as the probability (2) of 
prob(A/B&D) having that value given that prob(A/C) = r and prob(A/D) = s and prob(A/B ∨ C) = v. 
In other words, the expectable value of prob(A/B&D) is not changed by the information that 
prob(A/B ∨ C) = v. 
 What this actually shows is that the principle of subproperty defeat requires qualification. Its 
current formulation is: 

Subproperty Defeat for Nonclassical Direct Inference: 
£B&C 7 D 7 B and prob(A/D) = s ≠ r· is an undercutting defeater for the inference by 
nonclassical direct inference from £prob(A/B) = r· to £prob(A/B&C) = r·. 

What we see now is that this must be regarded as a defeasible defeater. Given any conjunction P of 
further probability statements, £P and the expectable value of prob(A/D) = s given P· is a defeater 
for subproperty defeat. Of course, P itself may introduce other defeaters. But in the preceding 
example, P is “prob(A/C) = r)”, and this does not introduce any new defeaters. 
 Subproperty defeaters for classical direct inference require a similar qualification, because they 
are derivable from subproperty defeaters for nonclassical direct inference. 
 This is a general phenomenon. Whenever we make a defeasible inference that a probability has 
its expectable value, this inference cannot be defeated by learning that some other probability also 
has its expectable value relative to some known conjunction P of additional probabilities, because 
the latter has probability 1. On the other hand, P itself might contain different defeaters for the 
inference to the expectable value. So all defeaters for principles of expectable value will be 
defeasible in this way. 

12. Projectibility and Complex Target Properties 
 A second example that was taken in Pollock (1990) to illustrate the need for projectibility 
constraints concerned putative direct inferences regarding disjunctive target properties. If we know 
that prob(A ∨ B/U) = r, running the probable probabilities software reveals, as expected, that the 
expectable value of prob(A ∨ B/C) = r. This suggests that there is no problem applying direct 
inference to such properties. However, I observed that if we know that prob(A/C) ≠ prob(A/U), 
that seems intuitively to defeat the direct inference. This is confirmed by the theory of probable 
probabilities. Running the probable probabilities software produces the following results: 
 
======================================================== 
Dividing U into 3 subsets A,B,C,  if the following constraints are satisfied: 
 prob((A v B) / U) = r 
 prob(A / C) = s 
 prob(A / U) = a 
 prob(B / U) = b 
 prob(C / U) = c 
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and the values of a, b, c, r, s are held constant, the following characterizations were found for the expectable values of 
the probabilities wanted: 
 ---------- 
prob((A v B) / C) = (((s + r) - ((r * s) + a)) / (1 - a)) 
---------- 
prob(B / C) = ((((r * a) + (b * s) + (a * s)) - ((r * s) + (a ^ 2) + (b * s * a))) / ((1 - a) * a)) 
 ---------- 
 ======================================================== 

I took this to suggest that we are not really applying direct inference to the non-projectible 
disjunction, but instead to the projectible properties A, B, and (A&B), and then inferring deductively 
that prob(A ∨ B/C) = prob(A/C) + prob(B/C) – prob(A&B).  
 However, I now realize that this diagnosis does not solve the problem. The same problem arises 
for conjunctions. If we know that prob(A & B/U) = r, the expectable value of prob(A & B/C) = r. 
These is in accordance with the principle of nonclassical direct inference. However, once again, 
knowing that prob(A/C) = s ≠ prob(A/U) defeats this inference.  

======================================================== 
Dividing U into 3 subsets A,B,C whose cardinalities relative to U are a, b, c, 
if the following constraints are satisfied: 
  prob((A & B) / U) = r 
 prob(A / C) = s 
 prob(A / U) = a 
 prob(B / U) = b 
 prob(C / U) = c 
and the values of a, b, c, r, s are held constant, the following characterizations were found for the expectable values of 
the probabilities wanted: 
---------- 
prob((A & B) / C) = ((r * s) / a) 
---------- 
prob(B / C) = ((((b * a) + (r * s)) - ((b * s * a) + (r * a))) / ((1 - a) * a)) 
---------- 
======================================================== 

It seems to be true in general that knowing that subformulas of logically complex formulas have 
probabilities diverging from their expectable values changes the expectable values of the 
probabilities of the complex formulas. This is true for all logically complex subformulas, so a 
projectibility constraint is useless. This illustrates the need for a new class of defeaters for direct 
inference that do not follow from the defeaters adumbrated above. However, I have not proven a 
general theorem about this, nor do I have a general principle of defeat that I can state with 
confidence. This is a matter for future research. 

13. Conclusions 
 Simple and intuitively unproblematic postulates regarding the proportion function that grounds 
nomic probability lead to a very powerful theory of probable probabilities. Combinatorial 
theorems about finite sets turn out to imply principles of analogous structure that license defeasible 
inferences about nomic probabilities. The definition of singular probabilities in terms of nomic 
probabilities has the consequence that analogs of these defeasible inference schemes apply to 
singular probabilities as well, and also license a wide variety of principles of direct inference, some 
not previously known. In the past, discovering what the defeaters are for principles of direct 
inference has proceeded in an ad hoc way, by finding examples in which direct inference yields 
intuitively incorrect results and then trying to construct a principle that correctly describes a class of 
cases in which the inferences should be blocked. This has led to some very convoluted principles 
with little claim of intuitive obviousness. However, within the theory of probable probabilities the 
discovery of defeaters reduces to the purely objective task of finding and proving combinatorial 
theorems about finite sets. This can often be done automatically using the probable probabilities 
software. 
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