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1 Reasoning in the Face of Pervasive Ignorance

One of the most striking characteristics of human beings is their ability to function
successfully in complex environments about which they know very little. Reflect on
how little you really know about all the individual matters of fact that characterize
the world. What, other than vague generalizations, do you know about the apples
on the trees of China, individual grains of sand, or even the residents of Cincinnati?
But that does not prevent you from eating an apple while visiting China, lying on
the beach in Hawaii, or giving a lecture in Cincinnati. Our ignorance of individual
matters of fact is many orders of magnitude greater than our knowledge. And the
situation does not improve when we turn to knowledge of general facts. Modern sci-
ence apprises us of some generalizations, and our experience teaches us numerous
higher-level although less precise general truths, but surely we are ignorant of most
general truths.

In light of our pervasive ignorance, we cannot get around in the world just rea-
soning deductively from our prior beliefs together with new perceptual input. This is
obvious when we look at the varieties of reasoning we actually employ. We tend to
trust perception, assuming that things are the way they appear to us, even though we
know that sometimes they are not. And we tend to assume that facts we have learned
perceptually will remain true, at least for awhile, when we are no longer perceiving
them, but of course, they might not. And, importantly, we combine our individ-
ual observations inductively to form beliefs about both statistical and exceptionless
generalizations. None of this reasoning is deductively valid. On the other hand, we
cannot be criticized for drawing conclusions on the basis of such non-conclusive ev-
idence, because there is no feasible alternative. Our non-deductive reasoning makes
our conclusions reasonable, but does not guarantee their truth. As our conclusions
are not guaranteed to be true, we must countenance the possibility that new infor-
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mation will lead us to change our minds, withdrawing previously adopted beliefs.
In this sense, our reasoning is “defeasible”. That is, it makes it reasonable for us to
form beliefs, but it can be “defeated” by considerations that make it unreasonable to
maintain the previously reasonable beliefs.

If we are to understand how rational cognition works, we must know how de-
feasible reasoning works, or ought to work. This chapter attempts to answer that
question.

2 The Structure of Defeasible Reasoning

2.1 Inference Graphs

I assume that much of our reasoning proceeds by stringing together individual in-
ferences into more complex arguments. In philosophy it is customary to think of
arguments as linear sequences of propositions, with each member of the sequence
being either a premise or the conclusion of an inference (in accordance with some
inference scheme) from earlier propositions in the sequence. However, this repre-
sentation of arguments is an artifact of the way we write them. In many cases the
ordering of the elements of the sequence is irrelevant to the structure of the argu-
ment. For instance, consider an argument that proceeds by giving a subargument
for P and an unrelated subargument for (P→Q), and then finishes by inferring Q
by modus ponens. We might diagram this argument as in figure 1. The ordering
of the elements of the two subarguments with respect to each other is irrelevant.
If we write the argument for Q as a linear sequence of propositions, we must or-
der the elements of the subarguments with respect to each other, thus introducing
artificial structure in the representation. For many purposes it is better to represent
the argument graphically, as as in figure 1. Such a graph is an inference graph. The
compound arrows linking elements of the inference graph represent the application
of inference schemes.

Fig. 1 An inference graph
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More generally, we can take the elements of arguments to be Fitch-style sequents
– ordered pairs of propositions and suppositions (sets of propositions), and inference
rules like conditionalization can take advantage of that. However, for the purposes
of this chapter, I will ignore that sophistication. In deductive reasoning, the inference
schemes employed are deductive inference rules. What distinguishes deductive rea-
soning from reasoning more generally is that the reasoning is not defeasible. More
precisely, given a deductive argument for a conclusion, you cannot rationally deny
the conclusion without denying one or more of the premises. In contrast, consider an
inductive argument. Suppose we observe a number of swans and they are all white.
This gives us a reason for thinking that all swans are white. If we subsequently
journey to Australia and observe a black swan, we must retract that conclusion. But
notice that this does not give us a reason for retracting any of the premises. It is
still reasonable to believe that each of the initially observed swans is white. What
distinguishes defeasible arguments from deductive arguments is that the addition of
information can mandate the retraction of the conclusion of a defeasible argument
without mandating the retraction of any of the premises or conclusions from which
the retracted conclusion was inferred.

2.2 Rebutting defeaters

Information that can mandate the retraction of the conclusion of a defeasible argu-
ment constitutes a defeater for the argument. There are two kinds of defeaters. The
simplest are rebutting defeaters, which attack an argument by attacking its conclu-
sion. In the inductive example concerning white swans, what defeated the argument
was the discovery of a black swan, and the reason that was a defeater is that it
entails the negation of the conclusion, i.e., it entails that not all swans are white.
More generally, a rebutting defeater could be any reason for denying the conclusion
(deductive or defeasible). For instance, I might be informed by Herbert, an ornithol-
ogist, that not all swans are white. People do not always speak truly, so the fact that
he tells me this does not entail that it is true that not all swans are white. Neverthe-
less, because Herbert is an ornithologist, his telling me that gives me a defeasible
reason for thinking that not all swans are white, so it is a rebutting defeater.

2.3 Undercutting defeaters

Not all defeaters are rebutting defeaters. Suppose Simon, whom I regard as very reli-
able, tells me, ”Don’t believe Herbert. He is incompetent.” That Herbert told me that
not all swans are white gives me a reason for believing that not all swans are white,
but Simon’s remarks about Herbert give me a reason for withdrawing my belief, and
they do so without either (1) making me doubt that Herbert said what I took him to
say or (2) giving me a reason for thinking it false that not all swans are white. Even if
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Herbert is incompetent, he might have accidentally gotten it right that not all swans
are white. Thus Simon’s remarks constitute a defeater, but not a rebutting defeater.
This is an example of an undercutting defeater. The difference between rebutting de-
featers and undercutting defeaters is that rebutting defeaters attack the conclusion of
a defeasible inference, while undercutting defeaters attack the defeasible inference
itself, without doing so by giving us a reason for thinking it has a false conclusion.
We can think of an undercutting defeater as a reason for thinking that it is false that
the premises of the inference would not be true unless the conclusion were true.
More simply, we can think of it as giving us a reason for believing that (under the
present circumstances) the truth of the premises does not guarantee the truth of the
conclusion. It will be convenient to symbolize this as ”premises⊗conclusion”. It is
useful to expand our graphical representation of reasoning by including defeat re-
lations. Thus we might represent the preceding example as in figure 2. Here I have
drawn the defeat relations using thick grey arrows. Note that the rebutting defeat is
symmetrical, but undercutting defeat is not.

Fig. 2 Inference graph with defeat

2.4 Computing Defeat-statuses

We can combine all of a cognizer’s reasoning into a single inference graph and re-
gard that as a representation of those aspects of his cognitive state that pertain to
reasoning. The hardest problem in a theory of defeasible reasoning is to give a pre-
cise account of how the structure of the cognizer’s inference graph determines what
he should believe. Such an account is called a “semantics” for defeasible reasoning,
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although it is not a semantics in the same sense as, for example, a semantics for
first-order logic. If a cognizer reasoned only deductively, it would be easy to pro-
vide an account of what he should believe. In that case, a cognizer should believe all
and only the conclusions of his arguments (assuming that the premises are somehow
initially justified). However, if an agent reasons defeasibly, then the conclusions of
some of his arguments may be defeaters for other arguments, and so he should not
believe the conclusions of all of them. For example, in figure 2, the cognizer first
concludes “All swans are white”. Then he constructs an argument for a defeater for
the first argument, at which point it would no longer be reasonable to believe its con-
clusion. But then he constructs a third argument supporting a defeater for the second
(defeating) argument, and that should reinstate the first argument. Obviously, the re-
lationships between interacting arguments can be very complex. We want a general
account of how it is determined which conclusions should be believed, or to use
philosophical parlance, which conclusions are “justified” and which are not. This
distinction enforces a further distinction between beliefs and conclusions. When a
cognizer constructs an argument, he entertains the conclusion and he entertains the
propositions comprising the intervening steps, but he need not believe them. Con-
structing arguments is one thing. Deciding which conclusions to accept is another.
What we want is a criterion which, when applied to the inference graph, determines
which conclusions are defeated and which are not, i.e., a criterion that determines
the defeat-statuses of the conclusions. The conclusions that ought to be believed are
those that are undefeated. The remainder of the chapter will be devoted to proposing
such a criterion.

3 The Multiple-Assignment Semantics

Let us collect all of an agent’s arguments into an inference-graph, where the nodes
are labeled by the conclusions of arguments, support-links tie nodes to the nodes
from which they are inferred, and defeat-links indicate defeat relations between
nodes. These links relate their roots to their targets. The root of a defeat-link is a sin-
gle node, and the root of a support-link is a set of nodes. The analysis is somewhat
simpler if we construct the inference-graph in such a way that when the same con-
clusion is supported by two or more arguments, it is represented by a separate node
for each argument. For example, consider the inference-graph diagrammed in fig-
ure three, which represents two different arguments for (P & Q) given the premises,
P, Q, A, and (A → (P & Q)). The nodes of such an inference-graph represent argu-
ments rather than just representing their conclusions. In such an inference-graph, a
node has at most one support-link. When it is unambiguous to do so, I will refer to
the nodes in terms of the conclusions they encode.

Because a conclusion can be supported by multiple arguments, it is the arguments
themselves to which we must first attach defeat-statuses. Then a conclusion is un-
defeated iff it is supported by at least one undefeated argument. The only exception
to this rule is “initial nodes”, which (from the perspective of the inference graph)
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Fig. 3 An inference graph

are simply “given” as premises. Initial nodes are unsupported by arguments, but are
taken to be undefeated. Ultimately, we want to use this machinery to model ratio-
nal cognition. In that case, all that can be regarded as “given” is perceptual input
(construed broadly to include such modes of perception as proprioception, intro-
spection, etc.), in which case it may be inaccurate to take the initial nodes to encode
propositions. It is probably better to regard them as encoding percepts.1

The node-basis of a node is the set of roots of its support-link (if it has one),
i.e., the set of nodes from which the node is inferred in a single step. If a node has
no support-link (i.e., it is initial) then the node-basis is empty. The node-defeaters
are the roots of the defeat-links having the node as their target. Given an inference-
graph, a semantics must determine which nodes encode (the conclusions of) argu-
ments that ought to be accepted, i.e., that are not defeated. This is the defeat-status
computation, and nodes are marked “defeated” or “undefeated”. The defeat-status
computation is made more complex by the fact that some arguments support their
conclusions more strongly than other arguments. For instance, if Jones tells me it
is raining, and Smith denies it, and I regard them as equally reliable, then I have
equally strong arguments both for believing that it is raining and for believing that
it is not raining. In that case, I should withhold belief, not accepting either conclu-
sion. On the other hand, if I regard Jones as much more reliable than Smith, then I
have a stronger argument for believing that it is raining, and if the difference is great
enough, that is the conclusion I should draw. So argument-strengths make a differ-
ence. However, most semantics for defeasible reasoning ignore argument strengths,
pretending that all initial nodes are equally well justified and all inference schemes
equally strong. I will make this same simplifying assumption in this chapter. What
can we say about the semantics in this simplified case?

Let us define:

A node of the inference-graph is initial iff its node-basis and list of
node-defeaters are empty.

It is initially tempting to try to characterize defeat-statuses recursively using the
following two rules:

(D1) Initial nodes are undefeated.
(D2) A non-initial node is undefeated iff all the members of its node-basis

1 See [11] and [12] for a fuller discussion of this.
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are undefeated and all node-defeaters are defeated.

However, this recursion turns out to be ungrounded because we can have nodes
of an inference-graph that defeat each other, as in inference-graph (4), where dashed
arrows indicate defeasible inferences and heavy arrows indicate defeat-links. In
computing defeat-statuses in inference-graph (4), we cannot proceed recursively
using rules (D1) and (D2), because that would require us to know the defeat-
status of Q before computing that of ∼Q, and also to know the defeat-status of
∼Q before computing that of Q. The general problem is that a node Q can have
an inference/defeatdescendant that is a defeater of Q, where an inference/defeat-
descendant of a node is any node that can be reached from the first node by follow-
ing support-links and defeat-links. I will say that a node is Q-dependent iff it is an
inference/defeat-descendant of a node Q. So the recursion is blocked in inference-
graph (4) by there being Q-dependent defeaters of Q and ∼Q-dependent defeaters
of ∼Q.

Inference-graph (4) is a case of “collective defeat”. For example, let P be “Jones
says that it is raining”, R be “Smith says that it is not raining”, and Q be “It is rain-
ing”. Given P and Q, and supposing you regard Smith and Jones as equally reliable,
what should you believe about the weather? It seems clear that you should withhold
belief, accepting neither Q nor ∼Q. In other words, both Q and ∼Q should be de-
feated. This constitutes a counter-example to rule (D2). So not only do rules (D1)
and (D2) not provide a recursive characterization of defeat-statuses – they are not
even true. The failure of these rules to provide a recursive characterization of defeat-
statuses suggests that no such characterization is possible, and that in turn suggested
to me (see [9, 10]) that rules (D1) and (D2) might be used to characterize defeat-
statuses in another way. Reiter’s default logic [13] proceeded in terms of multiple
“extensions”, and “skeptical default logic” characterizes a conclusion as following
nonmonotonically from a set of premises and defeasible inference-schemes iff it is
true in every extension. There are simple examples showing that this semantics is
inadequate for the general defeasible reasoning of epistemic agents (see below), but
the idea of having multiple extensions suggested to me that rules (D1) and (D2)
might be used to characterize multiple “status assignments”. On this approach, a
partial status assignment is an assignment of defeat-statuses to a subset of the nodes
of the inference-graph in accordance with (D1) and (D2):

An assignment σ of “defeated” and “undefeated” to a subset of the nodes of an
inference-graph is a partial status assignment iff:

1. σ assigns “undefeated” to any initial node;
2. σ assigns “undefeated” to a non-initial node α iff σ assigns “undefeated” to all

the members of the node-basis of α and all node-defeaters of α are assigned
“defeated”.
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My (1995) semantics defined:

σ is a status assignment iff σ is a partial status assignment and σ is not properly
contained in any other partial status assignment.

My proposal was then:

A node is undefeated iff every status assignment assigns “undefeated” to it; oth-
erwise it is defeated.

Belief in P is justified for an agent iff P is encoded by an undefeated node of the
inference-graph representing the agent’s current epistemological state.

I will refer to this semantics as the multiple-assignment semantics. To illustrate,
consider inference-graph (4) again. There are two status assignments for this infer-
ence graph:

assignment 1:

P “undefeated”
R “undefeated”
Q “undefeated”
∼Q “defeated”

assignment 2:

P “undefeated”
R “undefeate”
Q “defeated”
∼Q “undefeated”

P and R are undefeated, but neither Q nor ∼Q is assigned “undefeated” in every
assignment, so both are defeated.

The reason for making status assignments “partial” is that there are inference
graphs for which it is impossible to construct status assignments assigning statuses
to every node. One case in which this happens is when we have “self-defeating ar-
guments”, i.e., arguments whose conclusions defeat some of the inferences leading
to those conclusions. A simple example is inference-graph (5). A partial status as-
signment must assign “undefeated” to P. If it assigned “undefeated” to Q then it
would assign “undefeated” to R and P⊗Q, in which case it would have to assign
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“defeated” to Q. So it cannot assign “undefeated” to Q. If it assigned “defeated” to
Q it would have to assign “defeated” to R and P⊗Q, in which case it would have
to assign “undefeated” to Q. So that is not possible either. Thus a partial status as-
signment cannot assign anything to Q, R, and P⊗Q. Hence there is only one status
assignment (i.e., maximal partial status assignment), and it assigns “undefeated” to
P and nothing to the other nodes. Accordingly, P is undefeated and the other nodes
are defeated. An intuitive example having approximately the same form is shown in
inference-graph (6). Here we suppose that people generally tell the truth, and this
gives us a reason for believing what they tell us. However, some people suffer from
a malady known as “pink-elephant phobia”. In the presence of pink elephants, they
become strangely disoriented so that their statements about their surroundings cease
to be reliable. Now imagine Robert, who tells us that the elephant beside him looks
pink. In ordinary circumstances, we would infer that the elephant beside Robert does
look pink, and hence probably is pink. However, Robert suffers from pink-elephant
phobia. So if it were true that the elephant beside Robert is pink, we could not rely
upon his report to conclude that it is. So we should not conclude that it is pink.
We may be left wondering why he would say that it is, but we cannot explain his
utterance by supposing that the elephant really is pink. So this gives us no reason
at all for a judgment about the color of the elephant. On the other hand, it gives us
no reason to doubt that Robert did say that the elephant is pink, or that Robert has
pink-elephant phobia. Those are perfectly justified beliefs.

Inference-graphs (5) and (6) constitute intuitive counterexamples to default
logic [13] and the stable model semantics [2] because there are no extensions. Hence
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on those semantics, P has the same status as Q, R, and P⊗Q. It is perhaps more ob-
vious that this is a problem for those semantics if we imagine this self-defeating
argument being embedded in a larger inference-graph containing a number of oth-
erwise perfectly ordinary arguments. On these semantics, all of the nodes in all of
the arguments would have to have the same status, because there would still be no
extensions. But surely the presence of the self-defeating argument should not have
the effect of defeating all other (unrelated) arguments.

4 A Problem Case

The multiple-assignment semantics produces the intuitively correct answer for many
complicated inference-graphs. For a number of years, I thought that, given the sim-
plifying assumption that all arguments are equally strong, this semantics was cor-
rect. But I no longer think so. Here is the problem. Contrast inference-graph (4) with
inference-graph (7). Inference-graph (7) involves “odd-length defeat cycles”. For an
example of inference-graph (7), let A = “Jones says that Smith is unreliable”, B =
“Smith is unreliable”, C = “Smith says that Robinson is unreliable”, D = “Robinson
is unreliable”, E = “Robinson says that Jones is unreliable”, F = “Jones is unreli-
able”. Intuitively, this should be another case of collective defeat, with A, C, and
E being undefeated and B, D, and F being defeated. The multiple-assignment se-
mantics does yield this result, but it does it in a peculiar way. A, C, and E must be
assigned “undefeated”, but there is no consistent way to assign defeat-statuses to B,
D, and F . Accordingly, there is only one status assignment (maximal partial status
assignment), and it leaves B, D, and F unassigned. We get the right answer, but it
seems puzzling that we get it in a different way than we do for even-length defeat
cycles like that in inference-graph (4). This difference has always bothered me.

That we get the right answer in a different way does not show that the semantics
is incorrect. As long as otherwise equivalent inference-graphs containing odd-length
and even-length defeat cycles always produce the same defeat-statuses throughout
the graphs, there is no problem. However, they do not. Contrast inference-graphs
(8) and (9). In inference-graph (8), there are two status assignments, one assigning
“defeated” to B and “undefeated” to D, and the other assigning “undefeated” to B
and “defeated” to D. On either status assignment, P has an undefeated defeater, so it
is defeated on both status assignments, with the result that Q is undefeated on both
status assignments. Hence Q is undefeated simpliciter. However, in inference-graph
(9), there is only one status-assignment, and it assigns no status to any of B, D, F , P,
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or Q. Thus Q is defeated in inference-graph (9), but undefeated in inference-graph
(8). This, I take it, is a problem. Although it might not be clear which inference-
graph is producing the right answer, the right answer ought to be the same for both
inference-graphs. Thus the semantics is getting one of them it wrong. It is worth not-
ing in passing that, as far as I know, no currently available semantics for defeasible
reasoning handles (8) and (9) correctly. I take this to show that we need a different
semantics.

5 A Recursive Semantics

The multiple-assignment semantics is based upon the two rules:

(D1) Initial nodes are undefeated.
(D2)] A non-initial node is undefeated if all the members of its node-basis

are undefeated and all node-defeaters are defeated.

We have seen that these rules are not true as stated. For example, inference-graph
(4) is a counterexample to rule (D2). Both Q and ∼Q should be defeated, but then
both have undefeated node-bases but no undefeated defeaters. I tried to avoid this
problem by imposing these rules instead on partial-status assignments. But perhaps
we should take seriously the fact that these rules are simply wrong. In inference-
graph (4), in computing the defeat-status of Q, what is crucial is that (a) its node-
basis is undefeated, (b) the node-basis of its defeater is undefeated, and (c) there is
no other defeater for ∼Q besides Q itself. We can capture this by asking whether
∼Q would be defeated if it were not defeated by Q. We can test this by removing
the mutual defeat-links between Q and∼Q, producing inference-graph (4*). In (4*),
∼Q is undefeated. The proposal is that this should make Q defeated in (4). Note that
the defeaters we are removing in constructing inference-graph (4*) are those that are
Q-dependent, i.e., those that can be reached by following paths from Q consisting
of inference-links and defeat-links.
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Consider another example . inference-graph (10). In computing the defeat-status
of Q, we note that its node-basis is undefeated, and its defeater P⊗Q is defeated only
by the Q-dependent defeat-link from R⊗S. If we remove the Q-dependent defeat-
links from inference-graph (10) we get inference-graph (10*). In inference-graph
(10*), P⊗Q is undefeated, so again, the proposal is that this makes Q defeated in
inference-graph (10).

These examples suggest that we might replace rule (D2) by a rule that computes
the defeat-statuses of defeat-links in a modified inference-graph from which we have
removed those defeat-links that make the computation circular. Recall that a defeat-
link or support-link extends from its root to its target. The root of a defeat-link is a
single node, and the root of a support-link is a set of nodes. Let us define:

Definition 1. An inference/defeat-path from a node ϕ to a node θ is a sequence of
support-links and defeat-links such that (1) ϕ is or is a member of the root of the
first link in the path; (2) θ is the target of the last link in the path; (3) the root or is
a member of the root of each link after the first member of the path is the target of
the preceding link; (4) the path does not contain an internal loop, i.e., no two links
in the path have the same target.

Definition 2. θ is ϕ-dependent iff there is an inference/defeat-path from ϕ to ϕ .

Definition 3. A circular inference/defeat-path from a node ϕ to itself is an
inference/defeat-path from ϕ to a defeater for ϕ .

Definition 4. A defeat-link is ϕ-critical iff it is a member of some minimal set of
defeat-links such that removing all the defeat-links in the set suffices to cut all the
circular inference/defeat-paths from ϕ to ϕ .

It will be convenient to modify our understanding of initial nodes. Previously,
I took them to be automatically undefeated, and we can still regard that as the de-
fault value, but it will also be useful to be able to stipulate that some of the initial
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nodes in a newly-constructed inference-graph are defeated. The construction I am
going to propose builds new inference-graphs as subgraphs of preexisting inference-
graphs by (1) deleting ϕ-critical links, and (2) making ϕ-independent nodes initial,
i.e., deleting the arguments for them. The latter nodes, being ϕ-independent, have
defeat-statuses that were computable in the original inference-graph without first
having to compute a defeat-status for ϕ . I want to be able to simply stipulate that
these newly-initial nodes have the same defeat-statuses in the new inference-graph
as they had in the original. This allows us to define:

Definition 5. If ϕ is a node of an inference-graph G, let Gϕ be the inference-graph
that results from deleting all ϕ-critical defeat-links from G and making all mem-
bers of the node-basis of ϕ and all ϕ-independent nodes initial-nodes (i.e., deleting
their support-links and defeat-links) with stipulated defeat-statuses the same as their
defeat-statuses in G.

My proposed semantics now consists of two rules:

(CL1) Initial nodes are undefeated unless they are stipulated to be defeated.
(CL2) A non-initial node ϕ is undefeated in an inference-graph G iff all members

of the node-basis of ϕ are undefeated in G and any defeater for ϕ is
defeated in Gϕ .

On the assumption that arguments cannot be circular, this pair of rules can be
applied recursively to compute the defeat-status of any node in a finite inference-
graph. The recursion simply steps through arguments, computing the defeat-status
of each node . after the defeat-statuses of the nodes in ϕ’s node-basis are computed.
The problem of circular inference/defeat-paths is avoided by removing the ϕ-critical
defeat-links and evaluating node-defeaters in Gϕ . I will refer to this new semantics
as the critical-link semantics, and contrast it with the multiple-assignment seman-
tics.

I believe that the critical-link semantics gets everything right that the multiple-
assignment semantics got right. Consider a more complex example. Inference-graph
(11) illustrates the so called “lottery paradox” [3]. Here P reports a description (e.g.,
a newspaper report) of a fair lottery with one million tickets. P constitutes a defea-
sible reason for R, which is the description. That is, the newspaper report gives us
a defeasible reason for believing the lottery is fair and has a million tickets. In such
a lottery, each ticket has a probability of one in a million of being drawn, so for
each i, the statistical syllogism gives us a reason for believing ∼T i (“ticket i will
not be drawn”). The supposed paradox is that although we thusly have a reason for
believing of each ticket that it will not be drawn, we can also infer on the basis of
R that some ticket will be drawn. Of course, this is not really a paradox, because
the inferences are defeasible and this is a case of collective defeat. This results from
the fact that for each i, we can infer T i from (i) the description R (which entails that
some ticket will be drawn) and (ii) the conclusions that none of the other tickets
will be drawn. This gives us a defeating argument for the defeasible argument to
the conclusion that ∼T i, as diagrammed in inference-graph (11). The result is that
for each i, there is a status assignment on which ∼T i is assigned “defeated” and the
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other ∼T j’es are all assigned “undefeated”, and hence none of them are assigned
“undefeated” in every status assignment.

I believe that all (skeptical) semantics for defeasible reasoning get the lottery
paradox right. A more interesting example is the “lottery paradox paradox”, dia-
grammed in inference-graph (12). This results from the observation that because
R entails that some ticket will be drawn, from the collection of conclusions of the
form ∼T i we can infer ∼R, and that is a defeater for the defeasible inference from
∼P to ∼R. This is a self-defeating argument. Clearly, the inferences in the lottery
paradox should not lead us to disbelieve the newspaper’s description of the lottery,
so R should be undefeated. Circumscription [5], in its simple non-prioritized form,
gets this example wrong, because one way of minimizing abnormalities would be to
block the inference from P to R. My own early analysis [8] also gets this wrong. This
was the example that led me to the multiple-assignment semantics. The multiple-
assignment semantics gets this right. We still have the same status assignments as in
inference-graph (11), and ∼R is defeated in all of them because it is inferred from
the entire set of ∼T i’s, and one of those is defeated in every status assignment.
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It will be convenient to have a simpler example of an inference-graph with the
same general structure as the lottery paradox paradox. For that purpose we can
use inference-graph (13). Here P and R should be undefeated, but T 1, T 2, and ∼R
should be defeated. In the critical link semantics, to compute the defeat-status of R
in inference-graph (13), we construct (13*) by removing the only defeat-link whose
removal results in R no longer having an R-dependent defeater. In (13*), the triangle
consisting of R, T 1 and T 2 is analogous to inference-graph (4), with the result that
T 1 and T 2 are both defeated in inference-graph (13*). They constitute the node-basis
for ∼R, so ∼R is also defeated in inference-graph (13*). Thus by (CL2), R is unde-
feated in inference-graph (13). Turning to T 1 and T 2 in inference-graph (13), both
have R as their node-basis, and R is undefeated. Thus to compute the defeat-status
of T 1 or T 2, we construct inference-graph (13**), and observe that T 1 and T 2 are
undefeated there. It then follows by (CL2) that T 1 and T 2 are defeated in inference-
graph (13). Then because T 1 and T 2 are defeated,∼R is defeated in inference-graph
(13). So we get the intuitively correct answers throughout.

Inference-graph (13) also illustrates why, in constructing Gϕ , we remove only the
ϕ-critical defeat-links, and not all of the ϕ-dependent defeat-links. All of the defeat-
links in inference-graph (13) are R-dependent, and if we remove them all we get
inference-graph (13***). But in inference-graph (13***), ∼R is undefeated. This
would result in R being defeated in inference-graph (13) rather than undefeated.
Thus it is crucial to remove only the ϕ-critical defeat-links rather than all the ϕ-
dependent defeat-links.
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6 The Problem Cases

Now let us turn to some cases that the multiple-assignment semantics does not
or may not get right. First, consider the pair of inference-graphs that motivated
the search for a new semantics. These are inference-graphs (8) and (9). In these
inference-graphs, not everyone agrees whether Q should come out defeated or un-
defeated, but it does seem clear that whatever the right answer is, it should be the
same for both inference-graphs. Unfortunately, on the multiple-assignment seman-
tics, Q is undefeated in inference-graph (8) and defeated in inference-graph (9).

On the critical-link semantics, we compute the defeat-statuses of B and D in
inference-graph (8) by constructing inference-graph (8*). B and D are undefeated
in inference-graph (8*), so each defeats the other in inference-graph (8), with the
result that B and D are defeated in inference-graph (8). There are no P-critical
defeat-links in (8), so removing P-critical defeat-links leaves inference-graph (8)
unchanged. B and D are defeated in inference-graph (8), so it follows that P is de-
feated in inference-graph (8). Then because there are no Q-dependent defeat-links
in inference-graph (8), Q is undefeated.

The computation of defeat-statuses in inference-graph (9) works in exactly the
same way, via inference-graph (9*), again producing the result that Q is undefeated.
So on the critical-link semantics, we do not get a divergence between inference-
graphs (8) and (9).

Still, we can ask whether the answer we get for inference-graphs (8) and (9) is
the correct answer. There is some intuitive reason for thinking so. In inference-graph
(8), B and D are defeated, so they should not have the power to defeat P, and hence
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P should defeat Q. Similarly, in inference-graph (9), all three of B, D, and F are
defeated, and so again, D should not have the power to defeat P, and hence P should
defeat Q. However, not everyone agrees that this intuitive reasoning is correct. This
issue is closely connected with a question that has puzzled theorists since the earliest
work on the semantics of defeasible reasoning. The multiple-assignment semantics,
as well as default logic, the stable model semantics, circumscription, and almost
every familiar semantics for defeasible reasoning and nonmonotonic logic, supports
what I have called [8] “presumptive defeat”.2 For example, consider inference-graph
(4). On the multiple-assignment semantics, a defeated conclusion like Q that is as-
signed “defeated” in some status assignment and “undefeated” in another retains
the ability to defeat. That is because, in the assignment in which it is undefeated,
the defeatee is defeated, and hence not undefeated in all status-assignments. In the
case of inference-graph (4) this has the consequence that S is assigned “defeated” in
those status-assignments in which Q is assigned “defeated”, but S is assigned “un-
defeated” and ∼S is assigned “defeated” in those status-assignments in which Q is
assigned “undefeated”. Touretzky, Horty, and Thomason [14] called this “ambigu-
ity propagation”, and Makinson and Schlechta [4] called such arguments “Zombie
arguments” (they are dead, but they can still get you). However, the critical-link
semantics precludes presumptive defeat. It entails that Q, ∼Q, and hence S, are all
defeated, and ∼S is undefeated. Is this the right answer?

Consider an example. You are sitting with Keith and Alvin, and the following
conversation ensues:

Keith: I heard on the news this morning that it is going to rain this afternoon.
Alvin: Nonsense! I was sitting right beside you listening to the same weather

report, and the announcer clearly said that it is going to be a sunny day in Tucson.
Keith: You idiot, you must have cotton in your ears! It was perfectly clear that he
said it is going ro rain.

Alvin: You never pay attention. No one in his right mind could have thought he
said it was going to rain. He said it would be sunny.

. . .

At that point, you wander off shaking your head, still wondering what the weather
is going to be. Then it occurs to you that it is about time for the noon News, so you

2 The only semantics I know about that does not support presumptive defeat are certain versions
of Nute’s [6] defeasible logic. See also Covington, Nute, and Vellino [1], and Nute [7].
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turn on the radio and hear the announcer say, This just in from the National Weather
Service. It is going to rain in Tucson this afternoon. Surely, that settles the matter.
You will believe, with complete justification, that it is going to rain. The earlier
conversation between Keith and Alvin does not defeat your judgment on the basis
of the noon broadcast. This example has the form of inference-graph (14) if we let:

S = “It is going to rain in Tucson this afternoon”
Q = “The morning news said that S”
P = “Alvin says that Q”
R = “Keith says that Q”
A = “The noon news says that S”

This seems to me to be a fairly compelling example of the failure of presump-
tive defeat. Formally, presumptive defeat arises for the multiple-assignment seman-
tics from the fact that if a node P is defeated in one assignment and undefeated
in another, then P-dependent nodes will also have different defeat-statuses in the
different assignments unless one of their inference-ancestors is defeated absolutely
(i.e., in all status assignments). A similar problem arises for inference-nodes P that
cannot be assigned defeat-statuses in any assignments. This occurs, for example,
in cases of self-defeat or when there are odd-length defeat cycles. In this case, no
P-dependent node can be assigned a defeat-status either unless one of its inference-
ancestors is defeated absolutely. For example, consider once more the sad case of
Robert, the pink-elephant-phobic (inference-graph (6)). We observed that Roberts
statement that the elephant beside him is pink does not give us a good reason for
believing that it really is pink. Now suppose that Robert is accompanied by Herbert,
who is also standing beside the elephant. While Robert is blathering about pink-
elephants, Herbert turns to you and says, “I read in the newspaper this morning that
the President is going to visit China.” From this you infer that he did read that in
the newspaper, and hence the President is probably going to visit China. Suppose,
however, that Herbert also suffers from pink-elephant phobia. Does that make any
difference? It does not seem so, because as we observed, Robert’s statement gives
us no reason to think the elephant is pink, and so no reason to distrust Herbert’s
statement. This scenario is diagrammed in inference-graph (15). However, on the
multiple-assignment semantics,

The elephant beside Robert and Herbert is pink

has no status assignment, and hence neither does

(People generally tell the truth and Herbert says that he read in the newspaper this morning
that the President is going to visit China)⊗ Herbert read in the newspaper this morning that
the President is going to visit China

or

Herbert read in the newspaper this morning that the President is going to visit China

or



A Recursive Semantics for Defeasible Reasoning 19

The president is going to visit China.

This seems clearly wrong. On the other hand, on the critical-link semantics,

The elephant beside Robert and Herbert looks link

is defeated, and hence so is

The elephant beside Robert and Herbert is pink

and so is

(People generally tell the truth and Herbert says that he read in the newspaper this morning
that the President is going to visit China)⊗ Herbert read in the newspaper this morning that
the President is going to visit China.

Accordingly,

Herbert read in the newspaper this morning that the President is going to visit China

and

The president is going to visit China

are undefeated, which is the intuitively correct result.

The upshot is that the critical-link semantics agrees with the multiple-assignment
semantics on simple cases in which the latter seems to give the right answer, but the
critical-link semantics also seems to get right a number of cases that the multiple-
assignment semantics gets wrong. The test of a semantics for defeasible reasoning
is that it agrees with our intuitions about clear cases. So we have reasonably strong
inductive reasons for thinking that the critical-link semantics properly characterizes
the semantics of defeasible reasoning.
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7 Computing Defeat-Statuses

Principles (CL1) and (CL2) provide a recursive characterization of defeat-status
relative to an inference-graph. However, this characterization does not lend itself
well to implementation because it requires the construction of modified inference-
graphs, which would be computationally expensive. The objective of this section is
to produce an equivalent recursive characterization that appeals only to the given
inference-graph.

A defeat-link is ϕ-critical iff it is a member of a minimal set such that removing
all the defeat-links in the set suffices to cut all the circular inference/defeat-paths
from ϕ to ϕ . A necessary condition for a defeat-link L to be ϕ-critical is that it lie on
such a circular path. In general, there can be diverging and reconverging paths with
several “parallel” defeat-links, as in figure 16. In figure 16, removing the defeat-link
D3 suffices to cut both circular paths. But the set D1,D2 of parallel defeat-links is
also a minimal set of defeat-links such that the removal of all the links in the set
suffices to cut all the circular inference/defeat-paths from ϕ to ϕ . Thus in figure 16,
all of the defeat-links are ϕ-critical. However, lying on a circular inference/defeat-
path is not a sufficient condition for being ϕ-critical. A defeat-link on a circular
inference/defeat-path from ϕ to ϕ fails to be ϕ-critical when there is a path around
it consisting entirely of support-links, as diagrammed in figure 17. In this case, you
must remove D3 to cut both paths, but once you have done that, removing D1 is a
gratuitous additional deletion. So D1 is not contained in a minimal set of deletions
sufficient for cutting all the circular inference/defeat-paths from ϕ to ϕ , and hence
D1 is not ϕ-critical. This phenomenon is also illustrated by inference-graph (13),
and we saw that it is crucial to the computation of degrees of justification in that
inference-graph that such defeat-links not be regarded as ϕ-critical. It turns out that
this is the only way a defeat-link on a circular inference/defeat-path can fail to be
ϕ-critical, as will now be proven.

Fig. 16 Parallel ϕ-critical defeat-links
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Fig. 17 Defeat link that is not ϕ-critical

Let us say that a node α precedes a node β on an inference/defeat-path iff α and
β both lie on the path and either α = β or the path contains a subpath originating
on α and terminating on β . Node-ancestors of a node are nodes that can be reached
by following support-links backwards. It will be convenient to define:

Definition 6. A defeat-link L is bypassed on an inference/defeat-path µ in G iff
there is a node α preceding the root of L on µ and a node β preceded by the target
of L on µ such that α = β or α is a node-ancestor of β in G.

Definition 7. µ is a ϕ-circular-path in G iff µ is a circular inference/defeat-path in
G from ϕ to ϕ and no defeat-link in G is bypassed on µ .

Lemma 1. Lemma 1: If µ1 and µ2 are ϕ-circular-paths and every defeat-link in µ1
occurs in µ2, then µ1 and µ2 contain the same defeat-links and they occur in the
same order.

Proof. Proof: Suppose the defeat-links in µ1 are δ1, . . . ,δn, occurring in that order.
Suppose µ1 and µ2 differ first at the ith defeat-link. Then µ1 and µ2 look as in figure
18. But every defeat-link in µ1 occurs in µ2, so δi must occur later in µ2. But then
the path from δi−1 to δi in µ1 is a bypass around δ ∗i in µ2, which is impossible if it
is a ϕ-circular-path.2

Fig. 18 Paths must agree
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Lemma 2. Every defeat-link in a ϕ-circular-path is ϕ-critical.

Proof. Suppose δ is a defeat-link on the ϕ-circular-path µ . Let D be the set of all
defeaters in the inference-graph other than those on µ . If deleting all members of
D is sufficient to cut all ϕ-circular-paths not containing δ , then select a minimal
subset D0 of D whose deletion is sufficient to cut all ϕ-circular-paths not containing
δ . Adding δ to D0 gives us a set of defeat-links whose deletion is sufficient to cut
all ϕ-circular-paths. Furthermore, it is minimal, because adding δ cannot cut any
paths not containing δ , and all members of D0 are required to cut those paths. Thus
δ is a member of a minimal set of defeat-links the deletion of which is sufficient to
to cut all ϕ-circular-paths, i.e., δ is ϕ-critical. Thus if δ is not ϕ-critical, there is
a ϕ-circular-path ν not containing δ and not cut by cutting all defeat-links not in
µ . That is only possible if every defeat-link in ν is in µ . But then by the previous
lemma, µ and ν must contain the same defeat-links, so contrary to supposition, δ is
in ν . Thus the supposition that δ is not ϕ-critical is inconsistent with the supposition
that it lies on a ϕ-circular-path. 2

Lemma 3. If a defeat-link does not occur on any ϕ-circular-path then it is not ϕ-
critical.

Proof. For every circular inference/defeat-path µ from ϕ to ϕ there is a ϕ-circular-
path ν such that every defeat-link in ν is in µ . ν results from removing bypassed
defeat-links and support-links in µ and replacing them by their bypasses. It follows
that any set of deletions of defeat-links that will cut all ϕ-circular-paths will also
cut every circular inference/defeat-path from ϕ to ϕ . Conversely, ϕ-circular-paths
are also circular-paths from ϕ to ϕ , so any set of deletions that cuts all circular-
paths from ϕ to ϕ will also cut all .-circular-paths. So the ϕ-circular-paths and the
circular-paths from ϕ to ϕ have the same sets of deletions of defeat-links sufficient
to cut them, and hence the same minimal sets of deletions. If a defeat-link δ does not
occur on any ϕ-circular-path, then it is irrelevant to cutting all the ϕ-circular-paths,
and hence it is not in any minimal set of deletions sufficient to cut all circular-paths
from ϕ to ϕ , i.e., it is not ϕ-critical. 2

Theorem 4 follows immediately from lemmas 2 and 3:

Theorem 4. A defeat-link is ϕ-critical in G iff it lies on a ϕ-circular-path in G.

A further simplification results from observing that, for the purpose of deciding
whether a defeat-link is ϕ-critical, all we have to know about ϕ-circular-paths is
what defeat-links occur in them. It makes no difference what support-links they
contain. So let us define:

Definition 8. A ϕ-defeat-loop is a sequence µ of defeat-links for which there is a
ϕ-circular-path ν such that the same defeat-links occur in µ and ν and in the same
order.

In other words, to construct a ϕ-defeat-loop from a ϕ-circular-path we simply
remove all the support-links. We have the following very simple characterization of
ϕ-defeat-loops:



A Recursive Semantics for Defeasible Reasoning 23

Theorem 5. A sequence 〈δ1, . . . ,δn〉 of defeat-links is a ϕ-defeat-loop iff (1) ϕ is a
node-ancestor of the root of δ1, but not of the root of any δk for k > 1, (2) ϕ is the
target of δn, and (3) for each k < n, the target of δk is equal to or an ancestor of the
root of δk+1, but not of the root of δk+ j for j > 1.

The significance of ϕ-defeat-loops is that by omitting the support-links we make
them easier to process, but we still have the simple theorem:

Theorem 6. A defeat-link is ϕ-critical in G iff it lies on a ϕ-defeat-loop in G.

In simple cases, Gϕ will be an inference-graph in which no node ψ has a ψ-
critical defeat-link. But in more complex cases, like inference-graph (13), we have
to repeat the construction, constructing first Gϕ , and then (Gvarphi)ψ . Let us define
recursively:

Definition 9. G〈ϕ1,...,ϕn〉 =
(
G〈ϕ2,...,ϕn〉

)
ϕ1

As formulated, the recursive semantics requires us to construct the inference-
graphs G〈ϕ1,...,ϕn〉. To reformulate the semantics so as to avoid this, let us define
recursively:

Definition 10.

A defeat-link δ of G is 〈ϕ1, . . . ,ϕn〉-critical in G iff (1) δ lies on a ϕ1-defeat-
loop µ in G containing no 〈ϕ2, . . . ,ϕn〉-critical defeat-links.

A defeat-link δ of G is hereditarily-〈ϕ1, . . . ,ϕn〉-critical in G iff either δ is
〈ϕ1, . . . ,ϕn〉-critical in G or δ is hereditarily-〈ϕ2, . . . ,ϕn〉 in G.

A defeater (i.e., a node) of G is hereditarily-〈ϕ1, . . . ,ϕn〉-critical in G iff it is
the root of a hereditarily-〈ϕ1, . . . ,ϕn〉-critical defeat-link in G.

Obviously:

Theorem 7. δ is hereditarily-〈ϕ1, . . . ,ϕn〉-critical in G iff δ is ϕ1-critical in
G〈ϕ2,...,ϕn〉 or ϕ2-critical in G〈ϕ3,...,ϕn〉 or . . . or ϕn-critical in G.

Note that a defeat-link that is ϕi-critical in G〈ϕi+1,...,ϕn〉 does not exist in G〈ϕ j+1,...,ϕn〉
for j < i, so:

Theorem 8. δ is ϕ1-critical in G〈ϕ2,...,ϕn〉 iff δ is 〈ϕ1, . . . ,ϕn〉-critical in G.

Furthermore, a defeat-link still exists in G〈ϕ3,...,ϕn〉 (i.e., has not been removed) iff it
is not 〈ϕ1, . . . ,ϕn〉-critical in G.

Where θ ,ϕ2, . . . ,ϕn are nodes of an inference-graph G, define:

Definition 11. θ is 〈ϕ〉-independent of ψ in G iff there is no inference/defeat-path
in G from ϕ to θ .

θ is 〈ϕ1, . . . ,ϕn〉-independent in G iff every inference/defeat-path in G from ϕ1
to θ contains a hereditarily-〈ϕ2, . . . ,ϕn〉-critical defeat-link.
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Theorem 9. θ is 〈ϕ1, . . . ,ϕn〉-independent in G iff θ is ϕ1-independent in G〈ϕ2,...,ϕn〉.

Let us define recursively:

Definition 12.

(a) If ψ is initial in G then ψ is 〈ϕ1, . . . ,ϕn〉-undefeated in G iff ψ is undefeated in
G;

(b) If ψ is 〈ϕ1, . . . ,ϕn〉-independent in G then ψ is 〈ϕ1, . . . ,ϕn〉-undefeated in G iff
ψ is 〈ϕ2, . . . ,ϕn〉-undefeated in G;

(c) Otherwise, ψ is 〈ϕ1, . . . ,ϕn〉-undefeated in G iff (1) all members of the node-
basis of ψ are 〈ϕ1, . . . ,ϕn〉-undefeated in G, (2) all defeaters for ψ that are
〈ϕ1, . . . ,ϕn〉-independent of ψ in G and are not hereditarily-〈ϕ1, . . . ,ϕn〉-critical
in G (i.e., still exist in G〈ϕ3,...,ϕn〉) are 〈ϕ1, . . . ,ϕn〉-defeated in G, and (3) all de-
featers for ψ that are 〈ϕ1, . . . ,ϕn〉-dependent of ψ in G and are not hereditarily-
〈ϕ1, . . . ,ϕn〉-critical in G (i.e., still exist in G〈ϕ3,...,ϕn〉) are 〈ψ,ϕ1, . . . ,ϕn〉-defeated
in G,

The reason this is a recursive definition is that we always reach an n at which
there are no more 〈ϕ1, . . . ,ϕn〉-dependent defeaters, and then the values of all nodes
are computed recursively in terms of the values assigned to initial nodes.

It is now trivial to prove by induction on n that:

Theorem 10. ψ is undefeated in G〈ϕ1,...,ϕn〉 iff ψ is 〈ϕ1, . . . ,ϕn〉-undefeated in G.

Thus we have a recursive definition of the defeat-status of a node that computes
defeat-statuses entirely by reference to the given inference-graph rather than by
building a sequence of modified inference-graphs in accordance with the original
analysis. This is easily implemented with two pages of LISP code.

8 Conclusions

In an environment of real-world complexity, it is impossible to know enough about
the world to confine one’s reasoning to deductively valid inferences. One has to
reason defeasibly, drawing conclusions that are made reasonable by one’s evidence,
but be prepared to change one’s mind in the face of new evidence. The question then
arises how defeasible reasoning ought to work. In particular, given a set of defeasible
arguments some of which support defeaters for others, how is it determined which
conclusions ought to be believed? Most semantics for defeasible reasoning agree
with regard to simple cases, and produce intuitively congenial answers. But there
are some complex cases that all existing semantics seem to get wrong. This chapter
proposes a new semantics, based on the concept of a critical link, that arguably gets
those cases right. Furthermore, the semantics is recursive and easily implemented.
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