Hypergraphs

John L. Pollock

Department of Philosophy

University of Arizona

Tucson, Arizona 85721

pollock@arizona.edu

http://www.u.arizona.edu/~pollock
A defeat-link in HG can correspond to multiple defeat-links in G, some P-dependent, some P-critical, and others neither. We would like to find a way of constructing HGP so that only the non-P-critical defeat-links are represented.

In G, a single defeater may be the root of multiple defeat-links, because what gets defeated is a matter of same syntax. (P ⊗ Q) defeats every instance of an inference from P to Q.

Different instances of a defeater (root of a defeat-link) in G result from there being different arguments for it in HG. So if one instance is bypassed and another not in G, there will be a path in HG that bypasses the corresponding argument.

[image: image1.wmf]
Note that instead of having a support-link from A to F, we could have A = F.

We cannot remove either the defeater or the defeat-link itself in HG, because one instance is bypassed and the other not. We might try removing the support-path. However, we need the part from B to D, because it is used by the other instance too. Could we just remove the part from A* to B? It seems that could be used in another way. But not really. It is just B that would be used, and we get B from A as well.

If there is a path in HG containing a defeat-link, and the entire path is bypassed, then everything in it is protected. For any P-circular paths in HG, we remove all support-links and defeat-links that are not protected.

No, that removes too much. Here we want D to come out undefeated in HGB:

[image: image2.wmf]
If there are two ways of getting a defeat-link in HG, and one of them is bypassed, does that mean the defeat-link should stay, and we just don’t worry about removing the critical defeat-link in the simple inference-graph? In the simple inference-graph, if we have two instances of a defeat-link, one P-critical and the other not, does it make any difference whether we remove the P-critical one? It seems so. The non-P-critical one might be on a defeated path:

[image: image3.wmf] [image: image4.wmf]
Here we can still not compute the defeat-status of D, because F is defeated. But note that we already know that F is defeated in G when we go to compute a defeat-status for B. The lesson to be learned from this is that if we have two instances of a defeat-link, one P-critical and the other not, if the non-P-critical one is supported by an undefeated support-link, then it makes no difference whether we delete the P-critical one, but if the P-critical one is supported by a defeated support-link, we might as well remove both.

In fact, in computing HGP, why not just remove all nodes, support-links, and defeat-links that we have already computed to be defeated? Then any path leading to a P-critical link that is already known to be undefeated means that we already know that link to be undefeated, and so can compute that its target is defeated without constructing HGP or GP. So if we have to construct HGP, we know that P-independent paths leading to P-critical defeat-links are defeated, so we can just delete the defeat-link in HGP. The fact that there are multiple instances becomes irrelevant. For example, in inference-graph (13), we do not have to construct HGB:

[image: image5.wmf]
It may make a difference here that we are taking defeat to be an all-or-nothing matter. Otherwise it could take both defeaters to defeat B. – On second thought, maybe it does not make a difference. We go to HG13, and then delete the defeat-link.

We can handle this by first computing a defeat-status in HG recursively, where a recursive path that leads back to P returns nil. If a node has an undefeated support-link, it is unsupported, if all are defeated it is defeated, but if some are undefeated and others are nil, it is nil. Then if a defeater for P gets nil, we construct HGP by deleting P-critical defeat-links, and compute values for the P-dependent defeater for P there. Call these “directly computable values”.
What if we have several defeat-links on a path that is not bypassed:

[image: image6.wmf]
If either G or H is undefeated, we can compute that F is undefeated and B is defeated, without having to construct HGB. If G and H are both defeated we might as well omit them from the inference-graph, and then we can just delete the two B-critical defeat-links in constructing HGB.

What if we have two P-dependent instances of a defeat-link, but only one is P-critical?

The computation on hypergraphs is that a P-dependent defeat-link is P-critical iff it is not bypassed. For this to yield results equivalent to the computation on simple inference-graphs, it must be the case that if an instance of a defeat-link is P-critical in the corresponding inference-graph, then leaving all instances of the defeat-link in GP if they do not have directly computable values leaves the computation unchanged.
Consider a support-link λ in HG. If a defeat-link δ for λ in HG has a directly computable value of “defeated” in HG, then all arguments for it are defeated, and hence all instances in G are defeated. If it has a directly computable value of “undefeated” in HG, then some instance of it its root in G is undefeated. All instances of λ are targets of every instance of the root of  in G, so all instances of λ have an undefeated defeater in G. So a support-link λ in HG has a defeat-link having a directly computable value of “undefeated” in HG iff every instance of λ in G has a defeater having a directly computable value of “undefeated” in G; and λ has a defeat-link  having a directly computable value of “defeated” in HG iff every instance of  has a directly computable value of “defeated” in G.
Now suppose λ has no defeat-link in HG having a directly computable value of “undefeated”, and has some defeat-link having no directly computable value. If the defeat-link is not λ-dependent, then we assume that it has a computable value and that it is “defeated” iff every instance of it is defeated in G, and “undefeated” iff some instance of it is undefeated in G. Suppose instead that λ has a λ-dependent defeat-link in HG. So that defeat-link is the endpoint on a path p from λ to λ. Consider a defeat-link  on p. Suppose  is bypassed on p. Then it is bypassed on some corresponding path in G. However, there could be other corresponding paths in G (built from other arguments) on which  has instances that are not bypassed. If such an instance has a computable value of “defeated”, it is irrelevant to the rest of the computation of the value of its target, and if it has a value of “undefeated”, then  has a directly computable value of “undefeated” after all. So the latter is impossible. Hence only the bypassed instances of  in G are relevant to the defeat-status computation.

So assume that we already have the defeat-statuses of all λ-independent elements of HG on which λ is dependent. “λ-directly-computable” is understood relative to those previously computed values. For the inductive argument, we assume that the correspondence principle holds for all those previously computed values, and argue that it holds for λ.

A defeat-link  in HG is λ-critical iff it is λ-dependent, not λ-directly-computable, and lies on a λ-circular path on which it is bypassed.

We can define the λ-defeat-status of an element of HG to be its λ-directly-computable-value:

(1)
If x is a member of the basis of λ, or x is a λ-independent element of HG, the λ-defeat-status of x in HG is the defeat-status of x in HG;

(2)
The sets of λ-undefeated and λ-defeated elements of HG are the closures of the set of defeated and undefeated λ-independent elements of HG under the following rules:

(a)
A λ-dependent support-link  is λ-undefeated in HG if every member of the basis of  is λ-undefeated and every defeat-link for  is λ-defeated;

(b)
A λ-dependent support-link  is λ-defeated in HG if some member of the basis of  is λ-defeated or some defeat-link for  is λ-undefeated;

(c)
A λ-dependent inference-node is is λ-undefeated in HG if it has a λ-undefeated support-link;

(d)
A λ-dependent inference-node is is λ-defeated in HG if all of its support-links are λ-defeated;

(e)
A λ-dependent defeat-link is λ-defeated iff its root is λ-defeated;

(f)
A λ-dependent defeat-link is λ-undefeated iff its root is λ-undefeated;

(3)
If x is a λ-dependent element of HG that is neither λ-defeated nor λ-undefeated, its λ-defeat-status is NIL.

We define:

A defeat-link in HG is λ-critical iff its λ-defeat-status is NIL and it lies on a λ-circular inference/defeat path on which it is bypassed.

HGλ results from (1) making all λ-independent inferences nodes initial with stipulated value equal to their defeat status in HG, and (2) deleting all λ-critical defeat-links from HG.

Finally:

(1)
If the λ-defeat-status of λ in HG is “defeated”, λ is defeated in HG;

(2)
If the λ-defeat-status of λ in HG is “undefeated”, λ is undefeated in HG;

(3)
If the λ-defeat-status of λ in HG is NIL, λ is undefeated in HG iff all members of its basis are undefeated in HG and for every defeat-link  for λ in HG, either:

(a)
the λ-defeat-status for  is “defeated”; or

(b)
 is defeated in HGλ

(4)
An inference-node is undefeated in HG iff either it is initial with stipulated value “undefeated” or it has a support-link that is undefeated in HG;

(5)
A defeat-link is undefeated in HG iff its root is undefeated in HG.

My argument turns on two crucial observations:

(1)
Holding the defeat-statuses of the node-basis of ϕ constant, if a ϕ-independent defeat-link is defeated in G, it has no further affect on the computation of defeat-statuses for ϕ-dependent elements of the inference-graph, i.e., if we delete it from the inference-graph, no defeat-statuses for ϕ-dependent items will change.

(2)
In simple inference-graphs, a rebutting defeater defeats every node with the same content, and an undercutting defeater defeats every equivalent support-link.

We could distinguish between rebutting defeat-links, whose targets are inference-nodes, and undercutting defeat-links, whose targets are support-links.

Let us define defeat-statuses in a hypergraph in terms of the defeat-statuses of corresponding items in the corresponding simple inference-graph. (Define “corresponding”.) Now we look for a way of computing such defeat-statuses recursively in the hypergraph, without referring back to the simple inference-graph.

The computation of defeat-statuses in a hypergraph should proceed recursively along the course of arguments. The computation of the defeat-status of a support-link assumes that we already have the defeat-statuses of its basis, but not necessarily the defeat-statuses of its defeaters. The computation of the defeat-statuses of an inference-node assumes we already have the defeat-statuses of its support-links. And the defeat-status of a defeat-link is identified with the defeat-status of its root.

Circularity only arises in computing the defeat-statuses of support-links, because that is where defeaters can loop back. The computations for other items are straightforwardly recursive:

(HG1)
An inference-node is undefeated in HG iff either (1) it is initial with stipulated defeat-status “undefeated”, or (2) at least one of its support-links is undefeated in HG.

(HG2)
A defeat-link is undefeated in HG iff its root is undefeated in HG.

To compute the defeat-status of a support-link λ in HG, even if it has a λ-dependent defeat-link, we may be able to show that it also has an undefeated λ-independent defeat-link, or that the λ-dependent defeat-links are defeated (or, of course, some member of the basis might be already known to be defeated). So the first step is to try to do this. For this purpose, we define:

We can define the λ-defeat-status of an element of HG to be its λ-directly-computable-value:

(1)
If x is a member of the basis of λ, or x is a λ-independent element of HG, the λ-defeat-status of x in HG is the defeat-status of x in HG;

(2)
The sets of λ-undefeated and λ-defeated elements of HG are the closures of the set of defeated and undefeated λ-independent elements of HG under the following rules:

(a)
A λ-dependent support-link  is λ-undefeated in HG if every member of the basis of  is λ-undefeated and every defeat-link for  is λ-defeated;

(b)
A λ-dependent support-link  is λ-defeated in HG if some member of the basis of  is λ-defeated or some defeat-link for  is λ-undefeated;

(c)
A λ-dependent inference-node is is λ-undefeated in HG if it has a λ-undefeated support-link;

(d)
A λ-dependent inference-node is is λ-defeated in HG if all of its support-links are λ-defeated;

(e)
A λ-dependent defeat-link is λ-defeated iff its root is λ-defeated;

(f)
A λ-dependent defeat-link is λ-undefeated iff its root is λ-undefeated;

(3)
If x is a λ-dependent element of HG that is neither λ-defeated nor λ-undefeated, its λ-defeat-status is NIL.

The computation of the λ-defeat-status is straightforwardly recursive. Then we have:

(HG3)
If the λ-defeat-status of λ in HG is “defeated”, λ is defeated in HG;

(HG4)
If the λ-defeat-status of λ in HG is “undefeated”, λ is undefeated in HG;
The remaining case is when the λ-defeat-status of λ in HG is NIL. This is the case in which λ has a λ-dependent defeat-link  and the circularity prevents  from having a λ-defeat-status. Note that if the λ-defeat-status of λ in HG is NIL, then all members of its basis are undefeated in HG (otherwise the λ-defeat-status would be “defeated”) and no defeat-link for λ in HG has the λ-defeat-status “undefeated” (or, again, the λ-defeat-status of λ would be “defeated”). Let us define:

An inference/defeat-path from a support-link λ to a support-link  is a sequence of support-links and defeat-links such that (1) λ is the first link in the path; (2)  is the last link in the path; (3) the root of each defeat-link is the target of the preceding link; (4) the basis of each support-link after the first contains the target of the preceding link; (5) the path does not contain an internal loop, i.e., no two links in the path have the same target.

 is λ-dependent iff there is an inference/defeat-path from λ to .

A λ-circular inference/defeat-path is an inference/defeat-path from λ to λ.

An inference-node  is an inference-descendant of an inference-node  iff there is an inference/defeat-path p consisting solely of support-links where  is a member of the basis of the first support-link in p and  is the target of the last support-link in p.
A defeat-link  is bypassed on an inference/defeat-path p iff the target of either  or some link following  in p is either equal to or an inference-descendant of some link preceding  in p.
A defeat-link in HG is λ-critical iff its λ-defeat-status is NIL and it lies on a λ-circular inference/defeat path on which it is not bypassed.

HGλ results from (1) making all λ-independent inferences nodes initial with stipulated value equal to their defeat status in HG, and (2) deleting all λ-critical defeat-links from HG.

Now I will argue that the following holds:

(HG5)
If the λ-defeat-status of λ in HG is NIL, then λ is undefeated in HG iff for every defeat-link  for λ in HG,  is defeated in HGλ

My argument turns on the following crucial observation:

(DD)
In a simple inference-graph G, holding the defeat-statuses of the node-basis of ϕ constant, if a ϕ-independent defeat-link is defeated in G, it has no further affect on the computation of defeat-statuses for ϕ-dependent elements of the inference-graph.

Now suppose λ has no defeat-link in HG having a λ-defeat-status of “undefeated”, and has some defeat-link having a λ-defeat-status of NIL. That defeat-link must be λ-dependent (otherwise it would have a non-NIL λ-defeat-status), so it is the endpoint on a λ-circular inference/defeat path p. λ may have multiple instances in G. Some of them may not be self-dependent, but if any of those instances are undefeated in G, then by following the corresponding arguments in HG, we could compute that λ has a λ-defeat-status of “undefeated” in HG, contrary to our assumption. So it must be that any non-self-dependent instances of λ in G are defeated. Hence in evaluating λ in HG, we need only consider the self-dependent instances of λ in G.

Now consider a defeat-link  on the λ-circular inference/defeat path p. Suppose  is bypassed on p. Then it is bypassed on some corresponding path in G. However, there could be other instances of  in G that are not bypassed. If such an instance has a λ-defeat-status of “defeated”, by (DD) it is irrelevant to the rest of the computation of the value of its target, and if it has a value of “undefeated”, then  has a λ-defeat-status of “undefeated” after all. So the latter is impossible. Hence only the bypassed instances of  in G are relevant to the defeat-status computation. Removing them from G to form Gϕ is then equivalent to removing  in HG to form HGλ. That is, the defeat-statuses of λ-dependent items in Gϕ will be the same as their defeat-statuses in the simple inference-graphs that are instances of HGλ. λ is defeated in HG iff the targets ϕ of all instances of λ are defeated in G, iff the targets ϕ of all instances of λ have undefeated defeaters in the inference-graphs Gϕ, iff all λ has an undefeated defeat-link in HGλ.

A defeat-link can be bypassed but have an instance that is not bypassed. It is important to remove the instance that is not bypassed:

[image: image7.wmf]
We cannot do that directly in a hypergraph, but what we might do instead is remove the last non-bypassed support-links. Here are hypergraphs with that structure:

[image: image8.wmf]
More generally, the arguments for a defeat-link could diverge higher up, with one argument containing a bypass and another not.

[image: image9.wmf]
This works only if the simple inference-graphs GP and G*P are equivalent:

[image: image10.wmf]
Removing the support-link from S to E leaves E unsupported, so defeated, and hence the rightmost instance of (A ⊗ D) is defeated. So in this case it works. However, could we have a case where E plays a second role that requires it to be undefeated? Suppose our real hypergraph is:

[image: image11.wmf]
Here we have two defeaters for P, D and E, and must compute their defeat statuses. The equivalent simple inference-graph is:

[image: image12.wmf]
However, both E’s are defeated in G*P but the rightmost E is undefeated in GP. So these two simple inference-graphs are not equivalent. If we just look at the part of the graph that is relevant to E we have:

[image: image13.wmf]
Note that the defeat-link from A to C is no longer bypassed, so now it gets deleted, making both E’s undefeated in GP. So bypasses in arguments for one defeater can affect another defeater. Suppose we just have the simple inference-graph:

[image: image14.wmf]
Should E be defeated or undefeated in GP? We can redraw G as follows, which makes it clear that P should be defeated by D and the defeat status of E is irrelevant:

[image: image15.wmf]
Consider how to do the recursive computation in a simple inference-graph. We pick a defeater for P and construct the argument for it. This consists of a set of nodes (and implicitly a set of support-links, as each node has a unique basis) — its inference-ancestors. That is unique in a simple inference-graph. We can recursively compute the inference-ancestors and inference-descendants for P and all its inference-ancestors. Now we compute the P-defeat-status for the defeater (its defeat-status in GP). If any of the root nodes of the argument are defeated, the argument is defeated and so P is defeated. Otherwise, we walk up the argument from the roots. When we come to a node having a defeater, we want to know whether the defeater is undefeated in G, or undefeated relative to P (a recursive call of the computation being described) and P-bypassed. If so, it defeats the node of the argument and P is defeated. If we get all the way to P without finding any such defeaters, then P is undefeated.

To compute whether a defeater is P-undefeated and P-bypassed, we look at its argument. If any node in that argument is also in the argument for P, we have a bypass. Actually, we can restrict our attention to nodes succeeding the target of the defeater. Then we compute the P-defeat-status for the defeater. If we do not get a direct bypass, we find each defeater for the argument for the defeater, and see whether its argument contains a node that is in the argument for P. In that case both of the defeaters are P-bypassed. In this way, we check recursively generated lists of defeaters to see if they are P-bypassed (i.e., whether the first one has a node-ancestor in the argument for P). When we reach a point where a defeater has an argument with no defeaters, if we have not found a P-bypass, then that defeater is P-critical and can be ignored. When a defeater is not directly P-bypassed and all of the defeaters for its argument are P-critical, it is P-critical. When a defeater is P-bypassed, we compute its P-defeat-status.

;; This returns three values: status, frontnodes, bypassed, and dependency-lists

(defun undefeated (P &optional dependencies endpath start-nodes)

 (cond ((not (some #'(lambda (dl) (eq (car dl) P)) (car dependencies)))

 (cond ((cdr dependencies)

 (values (undefeated P (cdr dependencies) endpath (cdr start-nodes)) (list P) NIL NIL NIL))

 (t (values (defeat-status P) (list P) NIL NIL)))) ;; use the stored defeat-status

 ;; NO, WE MAY HAVE TO COMPUTE IT!

 #| In this case we want to assign P the status T and assign non-bypassed

 defeaters the status NIL. |#

 ((member P start-nodes) (values T (list P) T (list (list P))))

 (t

 (let* ((nodes nil)

 (bypassed? nil)

 (dependency-lists nil)

 (status

 (and (every

 #'(lambda (b)

 (multiple-value-bind

 (status frontnodes bypassed d-lists)

 (undefeated b dependencies endpath start-nodes)

 ;; UNDEFEATED returns d-lists, which are just the b-to-b paths containing no bypassed defeaters.

 (cond ((some #'(lambda (dl) (eq (car dl) b)) d-lists) ;; b is self-dependent

 (let ((b-d-lists (mapcar #'(lambda (dl) (cons b dl)) d-lists)))

 (multiple-value-bind

 (status frontnodes bypassed dep-lists)

 (undefeated b b-d-lists endpath (cons b start-nodes))

 (when bypassed (setf bypassed? T))

 (setf nodes (append frontnodes nodes))

 (setf dependency-lists (append b-d-lists dependency-lists))

 status)))

 (t

 (when bypassed (setf bypassed? T))

 (setf nodes (append frontnodes nodes))

 status))))

 (node-basis P))

 (every

 #'(lambda (d)

 (multiple-value-bind

 (status frontnodes bypassed d-lists)

 (undefeated d dependencies endpath start-nodes)

 (cond ((some #'(lambda (dl) (eq (car dl) d)) d-lists) ;; b is self-dependent

 (let ((d-d-lists (mapcar #'(lambda (dl) (cons d dl)) d-lists)))

 (multiple-value-bind

 (status frontnodes bypassed dep-lists)

 (undefeated d d-d-lists endpath (cons d start-nodes))

 (cond (bypassed?

 (or (not (some #'(lambda (n) (member d path)) nodes)) ;; d is bypassed

 (progn (when bypassed (setf bypassed? T))

 (setf nodes (append frontnodes nodes))

 (setf dependency-lists (append d-d-lists dependency-lists))

 (not status))))

 (t (when bypassed (setf bypassed? T))

 (setf nodes (append frontnodes nodes))

 (setf dependency-lists (append d-d-lists dependency-lists))

 (not status)))))

 (bypassed?

 (or (not (some #'(lambda (n) (member d path)) nodes)) ;; d is bypassed

 (progn (when bypassed (setf bypassed? T))

 (setf nodes (append frontnodes nodes))

 (not status))))

 (t (setf nodes (append frontnodes nodes))

 (not status)))))

 (node-defeaters node)))))

 (values status (cons P nodes) bypassed? dependency-lists)))))

===================

(defun undefeated (P &optional dependent endpath P0)

 (cond ((not (member P dependent))

 (values (defeat-status P) (list P) NIL)) ;; use the stored defeat-status

 ((eq P P0)

 #| In this case we want to assign P the status T and assign non-bypassed

 defeaters the status NIL. |#

 (values T (list P) T))

 (t

 (let* ((nodes nil)

 (bypassed? nil)

 (status

 (and (every

 #'(lambda (b)

 (multiple-value-bind

 (status frontnodes bypassed)

 (undefeated b dependent endpath P0)

 (when bypassed (setf bypassed? T))

 (setf nodes (append frontnodes nodes))

 status))

 (node-basis P))

 (every

 #'(lambda (d)

 (multiple-value-bind

 (status frontnodes bypassed)

 (undefeated d dependent endpath P0)

 (cond (bypassed?

 (when (some #'(lambda (n) (member n path)) nodes) ;; d is bypassed

 (setf nodes (append frontnodes nodes))

 (not status)))

 (t

 (setf nodes (append frontnodes nodes))

 (not status)))))

 (node-defeaters node)))))

 (values status (cons P nodes) bypassed?)))))

[image: image16.wmf]
Query #2

Query #1, nil nil <#2> #2

return T, nil (<#1,T>),nil

Query #4, nil (<#1,T>)<#2> #2

Query #3, nil (<#1,T>)<#4,#2> #2

return T, nil (<#3,T>,<#1,T>) nil

Query #2, nil (<#3,T>,<#1,T>) <#4,#2> #2 Here we should move to GQ
PAGE
13

