
Project Description
1. A Fictional Example

The sun shone brightly overhead, but the light was strangely muted, like dusk on the high desert of Utah. The
red cliffs towered overhead, and the coral pink sand spread to the horizon. Despite the sun, the sky was a dark dark
blue, with the stars shining through. There was a flicker of motion in the foreground, and Oscar crawled into view,
dragging himself torturously over the rocky surface. Oscar was in trouble.

The day had begun splendidly, as Oscar undertook a circumnavigation of the large mesa. But two thirds of the
way around, while exploring a side canyon, Oscar tried to climb over a rock pile that was less stable than it
appeared, and he found himself sliding uncontrollably down the sandy slope to end wedged between and under some
of the newly dislodged rocks. After working for some time he managed to wrench himself free, but as he did he heard
the heartrending scream of tearing metal and realized that he had hurt himself. He quickly realized that his solar
panel was no longer functioning. Oscar relied upon that panel to quench his voracious thirst as he explored the
Martian desert. He soon realized that he had also broken his radio antenna, and was no longer able to communicate
with the Lander. And as he rolled forward across the dune, it became apparent that he did not have full power in his
right rear tractor assembly.

The problem was serious. The sun was dropping rapidly towards the mesa, and Oscar had to get back to the
Lander before it was too dark to see. Oscar had been on Mars for a week, and in that time he had learned that parts
of the surface formed a loose powdery quicksand. If he got into that he would flounder, and it required considerable
power to extricate himself. Power and time were the two things he could not afford to waste. He had only his limited
battery power to get him back to the Lander, and the route back was through new territory. He could not return the
way he had come and make it back before dark, and if he were caught in the cold Martian night the power needed to
maintain minimal operating temperature would drain his battery and leave him to spend eternity on the floor of the
Martian desert.

Oscar had to strike out towards the Lander along the most direct route. Fortunately, Oscar had learned to
detect distant fields of quicksand by their color and texture, enabling him to plan a route around them. Of course, he
was not infallible at this. Sometimes he would find himself surrounded on three sides by quicksand he did not detect
earlier and have to backtrack. This time, he could not afford much backtracking. To make matters worse, as the
Martian dusk settled upon him, it became increasingly difficult to make out colors and textures. Oscar was equipped
with flood lights that would illuminate his path, but they changed appearances and made it harder to judge the
surface, and their continued use would drain his battery.

As Oscar picked his way laboriously through the rocks and over the sand, a new threat emerged. In the west he
could see an ominous haze that foreshadowed one of the howling Martian sandstorms. In the thin atmosphere, 200
mph winds could drive the sand into every joint and rapidly disable machinery. Oscar knew that, faced with the
sandstorm, the Lander would be tempted to use its limited mobility to take refuge in one of the canyons, but without
radio contact it could not tell Oscar that it was doing so. They had a previous arrangement regarding where the
Lander would go in an emergency, just to take care of the possibility of radio failure. But they had not foreseen the
simultaneous failure of the solar panels. Oscar could either make his way to the landing site or to the canyon, but if
he guessed wrong about where the Lander was he would not have enough power to make up for his mistake.

Fortunately, on the basis of what he had learned during his week on Mars, Oscar was able to make a
reasonable prediction of how long it would be before the sandstorm reached the Lander, and estimate that it was
more probable than not that the Lander would be waiting for him at the landing site when he arrived. Indeed, it was,
Oscar was able to plug into the Lander’s power supply and replenish his battery as they jointly took shelter from the
storm, and later he was able to repair his solar panel. The Fourth Martian Expedition ended happily.

Oscar was from a new breed of rovers endowed with sophisticated epistemic capabilities. His earliest brethren
had been lunar rovers that relied upon direct control from Earth to get them out of difficulties. The one minute time
lag it took radio signals to travel from Earth to the Moon meant that these rovers could not respond instantly to
unforeseen threats, and many of these early rovers succumbed to natural disasters, like falling into meteor craters
when the lunar surface suddenly and unexpected crumbled beneath their weight. The earthbound scientists realized
that this problem would be magnified intolerably on Mars, where at the best of times radio signals would take 15



minutes rather than one minute. Their initial attempt to solve this problem was to endow Mars rovers with sophisticated
planning capabilities. Unfortunately, this did not lead to the construction of survivable rovers. The problem was that
planning must be based upon both general knowledge and specific knowledge of one’s immediate surroundings.
Conditions on the surface of Mars were known only imprecisely — why else explore it? Scientists on earth could
equip rovers with their best understanding of Martian conditions, but these could not possibly cover all contingencies,
and they were bound to be wrong sometimes. It was imperative that a rover be able to learn for itself about the
dangers of the Martian environment. To do this, it needed sophisticated epistemic capabilities.

Faced with these problems, one NASA scientist suggested that they should look into the philosophical literature
on epistemology. But Dr. A replied, “Epistemology? That is philosophy! We’re scientists — we don’t do philosophy.”
His colleague, Dr. B, chimed in, “Yeah, we’ll solve this problem by just writing a program for knowledge acquisition.”
But then A observed, “Hmm, but what exactly do we want the program to do? I think we need a better specification
of the design goals.” B suggested, “I know — let’s ask a psychologist”. But the reply they got was, “Oh, we
psychologists don’t study good reasoning. We study the reasoning people actually do, be it good or bad. We are
often more interested in all the stupid things people do. If you want to know how good reasoning works, you need a
theory of rationality. That is the domain of the philosopher.” And so, happily, NASA turned back to the philosophical
literature and learned all about defeasible reasoning and its application to perception, temporal projection, causal
reasoning, the discovery and application of probabilities, etc.

2. The Need for Sophisticated Cognition
I devoted as much space as I did to the example because I often get the reaction that AI does not need solutions

to the problems I aim to solve — AI systems do not require such sophisticated cognitive abilities. The example of the
Mars rover is an argument to the contrary. Any sufficiently sophisticated cognitive agent must draw conclusions on
the basis of sensory information and make decisions about how to act on the basis of those conclusions and its
background knowledge. Some of the background knowledge can be precompiled, but much of it will have to be
acquired by the agent in its working environment.

If our aspirations are sufficiently limited, hacking may suffice to produce a system that satisfies our needs. But
to build a truly sophisticated system of information processing, we need a general characterization of what the
system is supposed to do. This will both aid us in designing the system and enable us to confirm that the finished
system meets our design goals. The design goal is to have a system that is capable of acquiring the kinds of
information it needs, and do so in such a way that the conclusions it draws are reasonable conclusions to draw given
its input. A general characterization of what conclusions are reasonable is a theory of rationality. The construction of
a truly sophisticated cognitive agent must presuppose a theory of rationality. That is largely a philosophical theory.

Scientists in other disciplines are sometimes inclined to dismiss philosophy as airy-fairy speculation, but that
just demonstrates an ignorance of what goes on in philosophy. At least those parts of philosophy that are of relevance
to building cognitive agents are precise and highly mathematical. In fact, all theoretical work in AI is based on
philosophical preconceptions, although generally rather simple (often simplistic) ones. For example, numerous AI
systems are based on results in formal logic (e.g., the completeness of resolution refutation). Formal logic sits
squarely on the border between philosophy and mathematics. As the logic gets more sophisticated (e.g., incorporating
modalities) the study of it tends to become focused more in philosophy than in mathematics. Similarly, most work on
decision-theoretic planning is based on classical decision theory, which, although subsequently embraced by economics,
was originally a philosophical theory about rational action. My general point is that even simple AI systems are
based upon philosophical theories, although in many cases the theories have become so entrenched in other disciplines
that their origins may go unrecognized.

Although existing AI systems are based upon philosophical theories concerning rationality, it is my contention
that they often make incorrect use of them, and further that the theories themselves are sometimes wrong and that the
best way to correct them is to see how they lead us astray in building cognitive agents. There should be a synergistic
relationship between philosophy and AI. The research proposed here is aimed at making sophisticated use of theories
of rational cognition in the construction of cognitive agents, and using our observations about the performance of
such agents to refine or correct the theories of rational cognition, thus improving the agent design. Let us look at this
in more detail.



3. Epistemic Cognition
Consider the kinds of epistemological capabilities we want a sophisticated epistemic cognizer to have. I will

illustrate these by focusing on the example of the Mars rover.

Perceptual Judgments To make routine judgments about its current situation on the basis of sensor input, the
rover needs to engage in perceptual reasoning. An agent that is cognitively less sophisticated than a human being
could simply read the output of its perceptual system (an image) as a veridical account of its surroundings. This is
the approach adopted by a lot of contemporary work in robotics. However, human cognition does not regard the
image as the epistemological endproduct. If the agent believes the image to be veridical, it will take its surroundings
to be the way they appear, but sometimes the agent will bring other non-perceptual knowledge to bear and judge that
the image is not a veridical representation of its surroundings. For example, in trying to decide how firm the ground
is before it, it is desirable for our rover to be able to decide that the ground is not as red as it appears (redness being
an indication of softness we can suppose) because it is being viewed in the light of the setting sun. In other words,
the image provides only a defeasible reason for judging that the environment is as represented in the image, and a
sophisticated agent should be able to defeat that defeasible presumption and arrive at conflicting beliefs in some
cases. To reason in this way, general principles of defeasible reasoning from perceptual images must be implemented
in the rover. A preliminary implementation of these principles is presented in [37]. It is based on the OSCAR system
of defeasible reasoning, which will be discussed further below. A deeper discussion of these principles can be found
in [48].

Temporal Projection Inferences based upon current perception can provide the rover with some knowledge of
its surroundings. However, that is of little use unless the rover can also draw conclusions about its current surroundings
on the basis of earlier (at least fairly recent) perception.  For instance, suppose the rover wants to judge whether the
sand to the right is redder (and hence probably softer) than the sand to the left. We suppose the rover has the ability
to make a visual judgment of the redness of the sand it is currently looking at. But as the rover cannot look at both
patches of sand at the same time, it will not be able to make the comparison using only current perception.  The rover
can look at one patch and draw a conclusion about its redness, but when the rover turns to look at the other patch, it
no longer has a percept of the first and so is no longer in a position to hold a justified belief about how red it is now.
This is a reflection of the fact that perception samples bits and pieces of the world at disparate times, and a cognitive
agent must be supplied with cognitive faculties enabling it to build a coherent picture of the world out of those bits
and pieces.  What the rover needs is some basis for believing that the first patch of sand has not changed color in the
brief interval since it was inspected.  In other words, the robot must have some basis for regarding the color as a
stable property — one that tends not to change quickly over time. This is provided by a defeasible principle of
temporal projection. As a first approximation, such a principle might have the form:

If t0 < t1, believing P-at-t0 is a defeasible reason for the agent to believe P-at-t1.

In [37], I defended a more sophisticated version of this principle and discussed an implementation of it in OSCAR. It
is clear, I think, that some such principle of defeasible inference must be included in the epistemology of our rover.

Causal Reasoning Obviously, the rover should be able to reason about the causal consequences of its actions
and the causal consequences of exogenous events that it witnesses. This requires, among other things, a solution to
the frame problem. Various solutions have been proposed. I favor the solution I proposed in [37]. Again, my
proposed solution has been implemented within OSCAR. It is noteworthy that most of the solutions that have been
proposed in the literature presuppose some form of defeasible or nonmonotonic reasoning.

Reasoning about Probabilities Most of the rover’s reasoning about its current situation will be based in part
on its general beliefs about its environment. Most of these general beliefs will assign conditional probabilities to
various eventualities. A certain amount of this probabilistic information can be supplied by the mission designers,
but if the world being explored is sufficiently unknown to warrant exploration, then there must be a lot of antecedently
unknown probabilities. The rover must have the ability to discover, for example, that the color and texture of the
sand is a probabilistic indicator of its softness. Section six will look more carefully at the epistemological problem of
acquiring the desired probabilistic knowledge.

Building an autonomous rover requires taking these problems seriously and implementing solutions to them.
You cannot solve the problems without engaging in epistemological analysis.



4. The OSCAR Architecture
One reaction I get from AI researchers who are not familiar with my work is that it is all very nice to speculate

about how such sophisticated cognition works, but it will be many years before we are in a position to build
implemented systems with such capabilities, and in the meantime we need to concentrate on solving problems that
are within our grasp. What these people are unaware of is just how much I have already accomplished along these
lines. My research has produced the OSCAR architecture for cognitive agents, and preliminary implementations of
all of the above varieties of reasoning are currently running in OSCAR. (The currently disseminated version of
OSCAR can be downloaded from my website.) As will become apparent below, there is still much work to be done,
but the goal of building robots capable of such cognition is not distant fantasy.

Defeasible Reasoning The current version of the OSCAR architecture is described in [32]. The core of the
architecture is a system of defeasible (non-monotonic) reasoning. Defeasible reasoning is reasoning that makes the
conclusion reasonable without guaranteeing its truth deductively. The previous section illustrates that sophisticated
cognition makes heavy use of defeasible reasoning — a conclusion that is now universally accepted in philosophical
epistemology. Defeasible reasoning has been investigated in both AI and philosophy. Originally, neither group of
researchers was aware of the other, and the work was done independently, but now there is considerable crosstalk
between the two research cultures. I was one of the first philosophers to argue for the importance of defeasible
reasoning, writing about it first in my dissertation in 1965, and then in numerous later articles and books
[20,21,22,23,24,25,26,27,30,31,32,33,34,35,36,37,48,38,41,47].

A defeasible reasoner has two parts. First, it produces arguments for conclusions, some of which can be
defeaters for steps in other arguments. Second, given a set of such arguments, it applies an evaluation algorithm to
determine which conclusions to adopt in the face of that set of arguments. These are the conclusions supported by
undefeated arguments. I will call such conclusions justified . So justification is relative to a set of arguments. Given a
particular set of inputs to the system, we can consider the set of all the arguments that can be constructed starting
from those inputs, and define a warranted conclusion to be one that is justified relative to that maximal set of
arguments.

An evaluation algorithm computes the set of conclusions that are justified according to some semantics for
defeasible reasoning. A number of different semantics have been proposed, the best known of which are versions of
circumscription and versions of default logic. I produced my first semantics for defeasible reasoning in 1979, but
only published it in full in 1986 [27]. It was later shown [49] to be “almost equivalent” to Dung’s preferred model
semantics [6]. However, I discovered some intuitive counterexamples to that semantics, and proposed a different
semantics in 1995. This has only recently been shown [57] to be equivalent to the currently popular stable model
semantics of Bondarenko et al [1]. Recent work on decision-theoretic planning led me to the realization that my 1995
semantics was still inadequate for some purposes, and I published a revised semantics in [46]. I will talk about that
further below.

Most implemented defeasible reasoners work only for very impoverished languages in which validity is decidable
(i.e., recursive). Typically, they only work for some version of the propositional calculus. But such languages have
inadequate expressive power to provide the knowledge representation machinery for a sophisticated cognitive agent.
OSCAR is the only implemented defeasible reasoner that works in a rich logical language like that of first-order
logic. The source of the difficulty here is that, as Israel [9] and Reiter [51] showed long ago, the set of warranted
conclusions for a defeasible reasoner is not generally going to be recursively enumerable. Familiar systems of
automated deductive reasoning produce recursively enumerable sets of theorems, and so cannot be generalized
straightforwardly to defeasible reasoning. However, I solved the problems of how to build a general-purpose defeasible
reasoner that avoids this difficulty in my [30] (see also my [32]). I showed that if the set of reason-schemas and
defeaters used by the reasoner satisfy certain reasonable constraints, then the set of warranted conclusions is Δ2 in the
hyperarithmetic hierarchy. That has the consequence that it is possible to build a reasoner with the following two
properties:

(1) If a conclusion is warranted, the reasoner will eventually reach a stage at which the conclusion becomes
justified and no further reasoning will render it unjustified.

(2) If a conclusion is unwarranted, the reasoner will eventually reach a stage at which the conclusion is
unjustified and no further reasoning will render it justified.

In other words, for each conclusion, the reasoning will eventually stabilize so that warranted conclusions are justified
and unwarranted conclusions are unjustified.



Unfortunately, there can never be a guarantee that the reasoner has reached the point where the status of a
particular conclusion has stabilized. This illustrates the fact that human reasoning is defeasible in two different
senses. First, it is synchronically defeasible, in the sense that adding premises can change what conclusions are
warranted. This is the kind of defeasibility studied in non-monotonic logic.  But human reasoning is also diachronically
defeasible, in the sense that even without adding premises, further reasoning can change the defeat status of a
conclusion. This is a very important feature of human reasoning. Our reasoning is defeasible in the sense that we
adopt conclusions tentatively, with the understanding that we might have to take them back later. What is important
here is that we really do adopt the conclusions, even if the adoption is tentative. In a rich and undecidable language
for knowledge representation, reasoning is non-terminating. But agents have to act. They cannot wait for the end of a
non-terminating process before deciding how to act, so they act on the basis of the currently justified conclusions.
This is what humans do, and this is what artificial agents can do as well if they are based on a defeasible reasoner
that computes the set of justified conclusions as it goes along and changes the justification status later if necessary.
This is the way OSCAR works.

Natural Deduction In addition to an algorithm for computing justification, an implemented defeasible reasoner
must construct arguments. The general form of OSCAR’s reasoning is analogous to that of a natural deduction
theorem prover. Most theorem provers in AI reduce formulas to clausal form and then reason by resolution refutation.
By contrast, OSCAR reasons with formulas in their full “natural form”. Natural deduction theorem provers are
distinguished by two characteristics. First, they can reason by “making suppositions for the sake of the argument”,
drawing conclusions relative to those suppositions, and then employing inference rules that enable them to discharge
the suppositions. For instance, natural deduction theorem provers generally employ a discharge rule to the effect that
if the conclusion Q has been inferred relative to the supposition P, the reasoner can conclude (P → Q) independently
of the supposition. Second, natural deduction theorem provers reason bidirectionally, reasoning backwards from the
conclusion sought as well as forwards from the given premises. The first version of OSCAR’s deductive theorem
proving was described in [29], and again in [32]. A more detailed description can be found in The OSCAR Manual,
which is available on my website.

OSCAR’s natural deduction theorem prover turns out to be extremely efficient. For example, a problem that has
often been used as a test problem for automated theorem provers is the “Schubert steamroller problem”:

     (∀x)(Wx→ Ax) (∀x)(∀y)[(Cx & By) → Mxy]
     (∀x)(Fx→ Ax) (∀x)(∀y)[(Sx & By) → Mxy]
     (∀x)(Bx→ Ax) (∀x)(∀y)[(Bx & Fy) → Mxy]
     (∀x)(Cx → Ax) (∀x)(∀y)[(Fx & Wy) → Mxy]
     (∀x)(Sx→ Ax) (∀x)(∀y)[(Wx & Fy) → ~Exy]
(∃w)Ww (∀x)(∀y)[(Wx & Gy) → ~Exy]
(∃f)Ff (∀x)(∀y)[(Bx & Cy) → Exy]
(∃b)Bb (∀x)(∀y)[(Bx & Sy) → ~Exy]
(∃c)Cc (∀x)[Cx → (∃y)(Py & Exy)]
(∃s)Ss (∀x)[Sx→ (∃y)(Py & Exy)]
(∃g)Gg (∀x)(Gx → Px)

     (∀x)[Ax → [(∀w)(Pw→ Exw) → (∀y)((Ay & (Myx & (∃z)(Pz & Eyz))) → Exy)]]

(∃x)(∃y)[(Ax & Ay) & (∃z)[Exy & (Gz & Eyz)]]

This is a slightly whimsical symbolization of the following:
Wolves, foxes, birds, caterpillars, and snails are animals, and there are some of each of them.  Also, there are
some grains, and grains are plants.  Every animal either likes to eat all plants or all animals much smaller than
itself that like to eat some plants.  Caterpillars and snails are much smaller than birds, which are much smaller
than foxes, which in turn are much smaller than wolves.  Wolves do not like to eat foxes or grains, while birds
like to eat caterpillars but not snails.  Caterpillars and snails like to eat some plants.  Therefore, there is an
animal that likes to eat a grain-eating animal.  [[19], 203]

The current version of OSCAR solves this problem by making 471 inferences, 145 of which are used in the final
proof. By this measure, the reasoning is 28% efficient. Theorem provers based on resolution refutation tend to have
much more difficulty with this problem, making thousands of inferences and ranging between .02% efficient and 9%



efficient [32] (page 162). On easier problems, OSCAR’s efficiency tends to range between 75% and 100%. (See the
sample problems on my website.)

A couple of years ago, Geoff Sutcliffe, librarian for the TPTP library (“Thousands of problems for theorem
provers”) proposed a “shootout” between OSCAR and Otter, a well-regarded resolution refutation theorem prover.
Sutcliffe selected 163 problems from the TPTP library, and OSCAR and Otter were run on the same machine. Of the
problems that Otter got, OSCAR failed to get three.  Of the problems that OSCAR got, Otter failed to get 16.  Of the
problems that both got, OSCAR was on the average 40 times faster than Otter, despite the fact that OSCAR is
written in LISP and Otter is written in C. So OSCAR is a fast and efficient theorem prover.

Large Databases A common problem for AI systems is that they may be able to solve a problem when given
just the relevant information, but when given lots of additional irrelevant information the proof search bogs down
and they become unable to solve the problem. The difficulty is one of being unable to retrieve the right information
at the right time. This will be a serious problem for an autonomous robot operating in the real world, because it must
store information relevant to all the problems it may encounter. This difficulty has been addressed in OSCAR in a
preliminary way. My general hypothesis that there are two keys to solving the relevance problem. First, the reasoning
has to be efficient, in just the sense illustrated above. OSCAR’s bidirectional reasoning does relatively little redundant
search. Second, information storage must be done efficiently. This is done in OSCAR by storing information in a
syntactically based discrimination net. I have done one very preliminary experiment to test this hypothesis. I gave
OSCAR six fairly difficult deductive reasoning problems (the Schubert Steamroller problem was among them), and
then added 100,000 irrelevant premises. It turns out that this slowed OSCAR down by only a factor of 2. It is my
impression that OSCAR is the only automated deductive reasoner that can solve such artificially bloated problems. It
is worth noting that the same strategy cannot be used for resolution refutation theorem provers, because the discrimination
net requires that formulas retain their full first-order form and not be reduced to clausal form.

It must be emphasized that this is just one preliminary test. I want to improve the technique, and test it on large
causal reasoning and planning problems. In the latter connection, a classical planner has been implemented within
OSCAR that works by reasoning defeasibly about plans. The defeasibility comes in via the search for threats. It is
not a particularly impressive planner, being roughly comparable to UCPOP, but it should suffice for this kind of test.
(note that the currently popular satisfiability planners and MDP planners don’t have a ghost of a chance of solving
such large problems.)

Further Comparisons It is easy to compare OSCAR’s deductive reasoning to other systems, because there are
numerous published results from other automated deductive reasoners. However, OSCAR’s principal strength is that
it can perform general-purpose defeasible reasoning. I cannot compare OSCAR to other defeasible reasoners generally,
because there are none that can solve the full range of problems OSCAR finds trivial. (For examples, see the file
“PC-examples.lisp” on my website.) There has, however, been considerable work on implementing solutions to some
specific defeasible reasoning problems, mainly those connected with the frame problem and the Yale Shooting
Problem [7],[8]. OSCAR solves the Yale Shooting Problem in 4 milliseconds on a rather slow Macintosh G4 (see my
[37] for details). For this purpose, the problem is encoded by giving OSCAR the following premises:

  (the_gun_is_loaded at 20)
   ((Jones is alive) at 20)
   (the_gun_is_fired at 30)
   (the_gun_is_fired when the_gun_is_loaded is causally sufficient for
                           ~(Jones is alive) after an interval 10)

and the query

(? ((Jones is alive) at 50))

There are other systems that purport to solve the Yale Shooting problem. The monotonic approaches stemming from
the work of Lin & Reiter [14] have spawned a lot of research, but they seem unpromising for the reasoning of agents
in domains of real-world complexity. They proceed by adopting “explanation closure axioms”. The axioms used
might be true in toy problems, but are certainly not true in the real world. For example, the Yale Shooting Problem is
solved by adding an axiom to the effect that the only way for Jones to cease to be alive is for him to be shot. In the
real world this would have to be replaced by an axiom enumerating all possible ways of terminating Jones’ life. The
problem is that we simply don’t know what all the ways of killing someone are, and if we did the disjunction of them
would make the axiom so long as to be completely unmanageable.

Other than OSCAR, the most fully developed defeasible approach to reasoning about causes involves circum-



scription and employs either some version of the situation calculus or the event calculus. Shanahan [56] has a nice
review of this work up to 1997. My reaction to this work is two-fold. First, it is “baroque”. It seems that each causal
reasoning problem has  to be coded anew, and the axiomatizations employed are incredibly complex. Second, they
proceed by reasoning deductively from the circumscription of the resulting theory. But the circumscription is a
second-order theory, and second-order reasoning cannot be fully implemented because it follows from Gödel’s
theorem that there is no complete proof algorithm for second-order logic. Again, this does not seem like a promising
way of designing a practical real-time agent. Compare it with OSCAR, which encodes problems very simply and
reasons about them very quickly.

Just to mention one other example, Shoham {67} proposed the “extended prediction problem”, which he
conjectured no automated system would be able to solve. It is a problem involving colliding billiard balls. OSCAR
solves the problem in 0.4 seconds on the same G4 Macintosh. (See my [37] for details.) For this purpose, nothing
sophisticated was done to accelerate the spatial reasoning. No doubt, this could be made much faster. Some more
sample problems can be found on my website, along with LISP code for the currently disseminated version of
OSCAR.

The upshot is that OSCAR is fast — easily fast enough to provide the inference engine for a real-time agent —
and OSCAR is able to handle both deductive reasoning problems and defeasible reasoning problems that other
systems are either unable to solve or can handle only with considerable difficulty.

5. Defeasible Reasoning
If OSCAR is such a great reasoner, why do I need support? Unfortunately, OSCAR is not perfect. Minimally, a

semantics for defeasible reasoning should tell us what conclusions are justified given a set of arguments supporting
these and other conclusions some of which may be defeaters for steps in some of the arguments. Viewed in this way,
the currently disseminated version of OSCAR is based on a semantics that is equivalent to the currently popular
stable model semantics [6].

However, there is a more general problem of which this is only a special case. Some arguments provide stronger
support for their conclusion than other arguments. For example, temporal projection provides weaker support for its
conclusion as the time interval between t0 and t1 grows. Similarly, when a conclusion is drawn (defeasibly) on the
basis of high probability, the higher the probability the better the justification for the conclusion. Degrees of
justification should play a role in the computation of defeat statuses. Given a strong argument for P and a much
weaker argument for ~P , P should be undefeated. But if the arguments are of equal strength, both P and ~P should
be defeated. Ideally, a semantics for defeasible reasoning should tell us not just which conclusions are justified, but
how justified they are. The proposal I made in [31] and [32] was to define status-assignments to be assignments of
degrees of justification to the conclusions of arguments, where the assignments are required to be consistent with
certain intuitively plausible principles regarding degrees of justification.  Then a conclusion is ruled undefeated iff it
is undefeated in every status assignment.

More precisely, we collect arguments into an inference graph , where the nodes represent the conclusions of
arguments, support-links tie nodes to the nodes from which they are inferred, and defeat-links indicate defeat
relations between nodes.  The analysis is somewhat simpler if we construct the inference graph in such a way that
when the same conclusion is supported by two or more arguments, it is represented by a separate node for each
argument.  So in an important sense, the nodes represent arguments rather than just representing their conclusions.  A
node α has a propositional content prop(α) (the proposition supported by α), the set def(α) of nodes that are
defeaters for α, the set basis(α) of nodes from which α is inferred, and the reason-scheme employed in the inference.

To define status-assignments, we first define the notion of a partial-status assignment, which assigns status-
assignments to some subset of an inference-graph G in accordance with the following rules:

σ is a partial-status-assignment for an inference-graph G iff for each α∈G:
1. if α encodes a percept, σ(α) is the strength of the percept;
2. otherwise, if basis(α) = ∅, σ(α) = 0;
3. otherwise, if for some δ∈def(α), either σ(δ) ≥  reason-strength(α) or there is a β∈basis(α) such that

σ(δ) ≥ σ(β), σ(α) = 0;
4. otherwise, if σ assigns values to all members of def(α) and basis(α), σ(α) = the minimum of

reason-strength(α) and the values of σ(β) for β∈basis(α).
σ is a status-assignment for an inference-graph G iff σ is a maximal partial-status-assignment for G (i.e.,



there is no partial-status-assignment σ* for G such that σ ⊂ σ*).
A node α is undefeated relative to an inference-graph G iff for every status-assignment σ for G, σ  assigns a
non-zero value to α.

Different status-assignments may assign different values to a node, but it turns out that if the node is undefeated,
all status-assignments assign the same value.  So we can define:

If a node α is defeated relative to an inference-graph G, its degree of justification relative to G is 0.  If it is
undefeated, its degree of justification relative to G is the unique value assigned to it by every status-
assignment.

Recall that nodes represent arguments.  If a proposition P is supported by more than one argument, then it will be
supported by more than one node in the inference-graph.  Accordingly, we can define:

A proposition P is justified to degree δ relative to an inference-graph G iff δ is the maximal γ such that
there is an α for which prop(α) = P and α is justified to degree γ relative to G.

A fully implemented system of defeasible reasoning based on this semantics is available on my web site. It is this
system that was used for implementing the principles discussed in sections three and four.

However, the use of this semantics in recent work on decision-theoretic planning
convinced me that it gives the wrong result in some important cases. The difficulty is that
on this semantics, defeat is an all-or-nothing matter. If a defeater is less justified than
what it defeats, then it has no effect. This seems intuitively wrong. Defeaters should be
able to “diminish” the degree of justification of a conclusion even when they are not able
to defeat the conclusion outright. In my [41] I made an initial proposal for a semantics
that could accommodate diminishers. Unlike semantics based on multiple models or multiple
status assignments, the new semantics provides a fully recursive characterization of degrees
of justification. The general obstacle to giving a recursive characterization is that there
can be inference/defeat-paths (paths consisting of linked support-links and defeat-links)
that go in a circle. Consider, for example, the simple case of “collective defeat” diagrammed
in figure 1. A straightforward recursive computation would require us to know the value
of ~Q in order to compute that for Q , and similarly to know that for Q before computing
that for ~Q. The new semantics solves this problem as follows. Let us say that a defeater
for a node of the inference-graph is independent of the node iff there is no inference/defeat-
path from the node to the defeater. First, it is shown that very general assumptions allow
us to prove that if a defeater is independent of the node for which it is a defeater, then the affect is to simply subtract
the strength of the defeating argument from the strength of the supporting argument (with the proviso that the value
does not go below zero). This was argued on the basis of fairly strong assumptions in my [41], but it is shown in my
[46] that the assumptions can be weakened dramatically. This handles the case in which the recursive computation is
not circular. When we do have circularity, the semantics removes the circularity by deleting defeat-links that lead to
the circularity. These are the critical links. In the above example, this produces the inference-graph of figure 2. The
values of Q and ~Q are then computed recursively in this modified inference-graph. The degree of justification of Q
in the original inference-graph is then the degree of justification of Q in the second inference-graph minus the degree
of justification of ~Q in the second inference-graph.

To turn this into a general semantics, we must say which defeat-links are critical. The proposal of my [41] was
that a defeat-link is critical iff it is a member of a minimal set of defeat-links whose deletion is sufficient to make Q
not self-dependent. Last Spring, I produced an implementation of that semantics, but experimenting with the im-
plementation led me to the realization that there were still some problems the semantics did not handle correctly. I
now have a tentative fix, but it is not as elegant as the original theory, and that bothers me a bit. I am exploring three
different approaches to implementing the semantics. Any of these approaches should work, but if the resulting
system is to provide the inference engine for a cognitive agent it is important that it be as efficient as possible. Thus
it is important to pursue all three approaches to implementation and compare the results experimentally. Given the
implemented system, it will be possible to use it to look for any further difficulties for the semantics.

Two of the three approaches to implementation do not look much like the original semantics, and proving them
correct involves proving some complex theorems in graph theory. I anticipate spending another year completing the
theory and the implementation.
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When the work is finished, it will constitute a theory of defeasible reasoning and an implemented AI system that
can provide the inference engine for a general-purpose cognitive agent. My plan is to then return briefly to the
reasoning described informally in section three. The work on perceptual reasoning, temporal projection, and causal
reasoning will, I think, require only minor polishing, and it will in turn provide a test bed for the defeasible reasoner.

At the same time this work is being done, I will have graduate students working on improving information
storage in the discrimination net. We can then test OSCAR’s ability to reason defeasibly against the background of a
huge database of information. It will be necessary for an autonomous agent to be able to do this. Working this out
may take another six months.

6. Reasoning About Probabilities
For the past eight years, I have been pursuing research on decision-theoretic planning in autonomous agents,

funded by NSF grants no. IRI-9634106 and IIS-0080888. This has produced a general theory of decision-theoretic
planning that differs considerably from more familiar theories (see [39]-[45]). The work described in section three,
and the theoretical work described in section five, were supported by this grant. The main product of the grant is a
book, Thinking about Acting: Logical Foundations for Rational Decision Making, which is very close to finished and
will probably be published by Oxford University Press. The intent is to use this theory for the basis of an implemented
decision-theoretic planner, to be incorporated into OSCAR. However, before the theory can be implemented, I must
have an implementation of certain kinds of probabilistic reasoning. After all, decision-theoretic reasoning makes
heavy use of probabilities. Preliminary work on implementing this probabilistic reasoning is what revealed the above
noted inadequacies concerning the way my theory of defeasible reasoning dealt with diminishers. I realized that to
make further progress I had to solve the problems concerning the reasoner, so my work on planning was temporarily
set aside. When the work described in section five is finished, I will return to the investigation of probabilistic
reasoning, and ultimately to decision-theoretic planning. However, the construction of an implemented planner will
probably not begin until after the period of this proposed grant. What I want to work on during the last half of the
period of this grant is the probabilistic reasoning.

Probability Distributions Probabilities are important for both epistemic and practical cognition. The rover
requires knowledge of probabilities both to make judgments about its current surroundings and to engage in decision-
theoretic planning about what it should do given those current surroundings. Most work on decision-theoretic
planning has pretended that the planning agent has at its disposal a complete probability distribution over all the
relevant variables of the problem (for example, [2],[3],[5],[11],[15],[16],[17],[54],[55]). In other words, where P1,...,Pn
is any set of propositions relevant to the problem (this includes propositions and their negations), the agent knows
the value of PROB(P1&...&Pn). This probability distribution should reflect both initial knowledge built into the agent
by the system designer and any new knowledge the agent has acquired by subsequent experience of its environment.

Everyone knows that in most real-world contexts, this is a completely unrealistic assumption, but I don’t think it
has generally been appreciated how serious the problem is, and researchers have not dealt with the problem of how
to do probabilistic reasoning without having a complete probability assignment. First, consider the magnitude of the
problem. For a sophisticated agent operating in a novel environment, pretty much anything might be relevant. It is up
to the agent to discover what is relevant by discovering what variables affect the probabilities of outcomes. So there
cannot be much a priori restriction on what variables are included in the probability distribution. But then it follows
that it is impossible for a sophisticated agent operating in an environment of real-world complexity to have such a
probability distribution at its disposal. The point is not that the agent could not learn the relevant probabilities. It
could not even store them all. The problem is a simple cardinality problem. How many variables must be included in
this probability distribution? If we have sufficiently limited aspirations, we may only insist that our agent be able to
function in a narrowly circumscribed environment. It is hard to imagine any realistic environment of practical
interest with, collectively, fewer than 300 variables that are relevant to the probabilities of some of the outcomes. If
we want our agent to be able to deal with novel environments of unrestricted complexity, then the number of
variables may be larger by many orders of magnitude. But let’s suppose there are just 300 two-valued variables
relevant to the planning problem. Then the number of conjunctions that must be assigned probabilities by a complete
probability distribution is 2300. This is approximately 1090. This is an immense number. It has been estimated that the
number of elementary particles in the universe is 1078. 2300 is twelve orders of magnitude larger, and this is from just
300 relevant variables. Clearly, no agent can store a complete probability distribution for such a problem in the form
of an explicit assignment of probabilities to each conjunction.

Perhaps there is a more efficient way of storing the probability distribution. For example, could we use a
Bayesian net (see [18]) with just 300 nodes? Bayesian nets are only helpful if the nodes are sparsely connected, i.e.,



if most of the probabilities recorded in the net are statistically independent of most of the nodes. How sparse does the
net have to be? Well, even if only one in every trillion (1012) probabilities had to be explicitly recorded in the
Bayesian net, that would still leave 1078 links, i.e., as many links as there are elementary particles in the universe.
There is no way to store such a Bayesian net in a real agent.

Can we realistically suppose that our connections are even sparser — so sparse that it is possible to store the
Bayesian net in a real agent? Let’s consider an example. This generalizes Kushmerick, Hanks and Weld’s [11]
“slippery gripper” problem. We are presented with a table on which there are 300 numbered blocks, and a panel of
numbered buttons. Pushing a button activates a robot arm which attempts to pick up the corresponding block and
remove it from the table. We get 100 dollars for each block that is removed. Pushing a button costs two dollars. The
hitch is that half of the blocks are greasy, but we don’t know which. Initially each block has an equal probability of
being greasy. If a block is not greasy, pushing the button will result in its being removed from the table with
probability 1.0, but if it is greasy the probability is only 0.1. We are given 300 chances to either push a button or do
nothing. In between, we are given the opportunity to look at the table, which costs one dollar, or do nothing. Looking
will reveal what blocks are still on the table, but will not reveal directly whether a block is greasy. What should we
do? Humans find this problem terribly easy. Everyone I have tried this upon has immediately produced the optimal
plan:  push each button once, and don’t bother to look at the table. Although humans find this problem easy, I have
argued recently [42] that no existing planner can solve this problem. But what is important for present purposes is
that the probabilities of relevance to this problem cannot be represented by a Bayesian net. The relevant variables are
whether a block is on the table (Ti), whether a button has been pushed (Pi), and whether a block is greasy (Gi). It
would be natural to include a node for each of these (for each stage of the plan), producing a graph with 5200 nodes,
and then linking the nodes as necessary to record the primitive probabilistic connections. However, the resulting
graph would not be a Bayesian net, because a Bayesian net must be acyclic. If we include nodes for the greasiness of
the blocks, acyclicity fails. The probability of a block being on the table after the corresponding button is pushed is
influenced by whether it is greasy, and the probability of its being greasy given that the button is pushed is
influenced by whether it is still on the table. If we do not include nodes for the greasiness of the blocks, then the
nodes just concern which blocks are on the table at each stage and which buttons have been pushed. This more
restricted set of nodes fails to represent all of our probabilistic information, but it does have the form of a Bayesian
net. However, as noted above, the probability of a block being greasy is influenced by what other blocks are on the
table, and that in turn affects the probability that the block will still be on the table after its button is pushed. Thus the
Bayesian net must encode as primitive every probability of the form PROB(Ti/Pi & Πj∈KTj) where K is a set of block
numbers and i∉K. There are 2300 such probabilities, so this Bayesian net cannot be encoded in a real agent. The
upshot is that even in rather simple domains of real-world complexity, the use of Bayesian nets may not solve the
problem of encoding a complete probability distribution in an agent.

It is to be emphasized that this example is unrealistic only in that, in real-world applications like planetary
exploration, the number of variables potentially relevant to the probabilities of various outcomes will be orders of
magnitude greater than 300. The upshot is that, even by using Bayesian nets and making reasonable assumptions
about probabilistic independence, an agent cannot store a complete probability distribution, or even complete probability
distributions for relatively small subsets of variables. It must make do with much spottier knowledge of probabilities,
and try to acquire new probability knowledge as it needs it. How is this possible?

Thin Knowledge of Probabilities It seems to be unavoidable that agents capable of sophisticated cognition
about the real world must learn their probabilities as they go, and they will never have anything approaching a
complete probability distribution. We can put this by saying that they will have “thin” knowledge of probabilities.
This is worse than just gappy knowledge. What they don’t know will, of necessity, be orders of magnitude greater
than what they do know. It is worth noting that this does not set probabilities apart from anything else. Real agents
will have thin knowledge of just about everything. The world is just too big for an agent to know a significant
proportion of all the facts about it. How can agents function with such thin knowledge? This is a problem of supreme
importance if we want to design sophisticated agents capable of functioning in the real world. In many cases it is
defeasible reasoning that enables human beings to bridge the gaps, allowing them to draw conclusions on the basis of
the limited knowledge they have, and allowing them to assume that if they knew more, that would not upset those
conclusions. For example, when we reason inductively we extrapolate from our observations and infer defeasibly
that things we have not observed will have the same general properties as things we have observed. Similarly,
perceptual reasoning builds in the defeasible assumption that things are they way they appear to be, and temporal



reasoning builds in a defeasible assumption that the properties of things do not change very fast (temporal projection).
When we turn to probabilities, we find that agents must also be able to function on the basis of thin knowledge.

This gives rise to two questions. First, how can agents (e.g., human beings) acquire the limited probability knowledge
they do have? Second, how can they get by with so little probability knowledge? I will argue that defeasible
reasoning plays a crucial role in the answer to both of these questions.

Two Kinds of Probabilities In addressing questions about how to use probabilities in cognition, it is important
to realize that there are major disputes about the foundations of probability theory. These disputes bear upon the
properties of probabilities and how they can be used for cognitive tasks like planning. Furthermore, there is more
than one kind of probability, and the different kinds of probabilities have somewhat different logical and mathematical
properties. AI researchers are often well versed in “standard” mathematical probability theory, but not in the
philosophical foundations. This can be a major problem, because standard mathematical probability theory is just a
version of measure theory, and it is often not clear to what extent its results are applicable to “real” probabilities. For
instance, mathematical probability theory assumes that probabilities are countably additive, but that assumption is at
least debatable when applied to various kinds of “real” probability. Countable additivity has been rejected by most of
the important writers in the foundations of probability theory, including de Finetti [4], Reichenbach [50], Jeffrey
[10], Skyrms [53], Savage [52], and Kyburg [12]. Philosophical issues in the foundations of probability have direct
relevance to how we can build agents that are able to reason probabilistically.

The most important division in the foundations of probability concern the difference between subjective and
objective probabilities. Objective probabilities are supposed to represent objective facts about the way the world is.
Subjective probabilities are reports of the degree of belief of a cognizer rather than factual statements about the
environment [11,18,51,52]. I believe that subjective probability theory is subject to overwhelming difficulties, and
does not provide an adequate foundation for the probabilistic reasoning that an agent must perform to get around in
the world. For a detailed discussion of some of these difficulties, see chapter four of [47] and chapter three of [32].
The simplest reason for rejecting the use of subjective probabilities in agent design is that if, as subjectivists often
propose, the only constraint on a rational agent’s subjective probabilities is that they be coherent (conform to the
probability calculus), then an agent can attach absolutely any probability to any contingent proposition as long as the
probabilities associated with other propositions are adjusted so that the entire set of probabilities is coherent. The
probabilities will be completely insensitive to the way the world is. But if we are going to use probabilities as a guide
to action, surely we want them to reflect the way the world is. I admit that this may be an overly quick rejection of
subjective probability theory, but see the above references for a more careful discussion of the matter.

Most theories of objective probability take there to be an intimate connection between probabilities and frequencies.
See chapter one of [28] for a survey of objective probability theories. Relative frequencies relate properties. freq[A/B]
is the proportion of B’s that are A’s. For example, we can talk about the frequency with which patches of sand of a
certain color are soft. Where #A is the cardinality of the set of all A’s, freq[A/B] = #(A&B)/#B. The exact connection
between objective probabilities and frequencies is controversial (my own theory is presented in [28]), but at the very
least, there is an epistemological connection between them. Observing that the relative frequency of A’s in a sample
of B’s is some number r gives us a defeasible reason for thinking that prob(A /B), the probability of an arbitrary B
being an A, is approximately r. This inference is based upon a general principle of statistical induction, and one of
the burdens of a theory of objective probability is to formulate such a principle precisely.

Objective probabilities inferred from relative frequencies have the same logical form as the relative frequencies
themselves. That is, they relate properties. prob(A/B) is the probability of an arbitrary B being an A. This is not the
probability of a proposition being true. This is an indefinite probability, or a “general” probability. Indefinite
probabilities are most naturally formulated using free variables. For example, we might write “the probability of a
patch of sand of this color being soft” as prob(x is soft/x is sand of this color).

Inductive reasoning and statistical sampling justify beliefs about indefinite probabilities, but the probabilities
needed for decision making are the probabilities that particular propositions are true. For example, our rover might
conclude inductively that the probability of sand being soft when it looks a certain way is .7. This is an indefinite
probability about arbitrary times and places. But in deciding whether to attempt to cross this particular patch of sand,
what the rover wants to know is how probable it is that this very patch of sand is soft. This is the probability of a
particular proposition being true, viz., the proposition that this sand is soft. Such probabilities are definite or “single
case” probabilities. I will follow the convention of symbolizing indefinite probabilities using prob and definite
probabilities using PROB. Intuitively, both definite and indefinite probabilities make sense. An objective probability



theory must accommodate both. Introspecting our own cognition, it seems pretty clear that statistical or inductive
reasoning produces knowledge of indefinite probabilities, and then definite probabilities are inferred by somehow
applying the indefinite probabilities to particular cases. This kind of inference is called direct inference. I will
discuss direct inference a bit more fully below.

It is noteworthy that standard mathematical probability theory is only a theory of definite probabilities, not
indefinite probabilities. The basis for mathematical probability theory is Kolmogorov’s axioms, and according to
those axioms probabilities attach to “events”, which are best identified with classes of logically equivalent propositions.
Indefinite probabilities, dealing as they do with relations (expressed by open formulas in, e.g., first-order logic) have
a richer logical structure  than definite probabilities. There are numerous principles that hold for indefinite probabilities
but cannot even be expressed in the language of the standard probability calculus. Here are three intuitively plausible
ones that were discussed in [28]:
(IND) prob(Axy/Bxy & y = c) = prob(Axc/Bxc).
(PFREQ) prob(Ax/Bx & freq[Ay/By] = r) = r.
(PPROB) prob(Ax/Bx & prob(Ay/By) = r) = r.

None of these principles is even well-formed in the standard probability calculus. This is another reflection of the
fact that mathematical probability theory may not have much to do with “real” probabilities.

Note that the free variables occurring in definite probabilities are quite different from the “random variables”
occurring in the standard probability calculus. If r is a random variable ranging over patches of sand on Mars, then
PROB(r is soft) is the probability distribution possibly assigning a different value to the definite probability of each
patch of sand being soft. PROB(r is soft) does not have a single value. On the other hand, prob(x is soft/x is a patch of
sand on Mars) has a single value. It is, roughly, the proportion of patches of sand on Mars that we would expect to be
soft.

It is remarkable how often definite and indefinite probabilities are confused with one another in AI. For
example, imagine a medical diagnosis system based on a Bayesian net. Clearly, the probabilities that go into building
the net are general probabilities, i.e., indefinite probabilities. But the conclusions of medical diagnosis are the
probabilities that specific patients have particular diseases, i.e., they are definite probabilities. Definite probabilities
cannot be derived from indefinite probabilities just on the basis of calculations in the probability calculus. Direct
inference is required, and as we will see below, that involves more than mathematical calculation. But all Bayesian
nets can do is perform calculations in the probability calculus. So this use of Bayesian nets is mathematically invalid.

A sophisticated autonomous rover is going to have to be able to discover indefinite probabilities describing its
environment (e.g., when the surface of the ground looks a certain way it is apt to be soft), employ direct inference to
infer definite probabilities about its current situation (e.g., the sand in front of it now is probably soft), and then use
the latter in decision-theoretic reasoning about what to do. To implement such reasoning in an agent, we first need
precise theories about how statistical induction and direct inference should work. These are epistemological theories
governing how to reason about indefinite and definite probabilities.

Direct Inference For decision-theoretic reasoning, an agent must know the probabilities of various possible
outcomes of performing a specific action here and now. These are definite probabilities — not indefinite probabilities.
For example, if the rover is faced with a patch of reddish sand, it will want to know the probability that if it attempts
to drive over this patch of sand, it will become bogged down. What is at issue here is the definite probability. The
rover should only be interested in the indefinite probability of becoming bogged down while driving over an
arbitrary reddish patch of sand insofar as that helps it to evaluate the definite probability. The indefinite probability is
of only “theoretical” interest. The definite probability is of pressing practical concern.

Although our practical interest is in the definite probabilities, it seems clear that the way we get them is by
applying our knowledge of indefinite probabilities to the present circumstances. If the sand has a particular reddish
cast, and I know that the probability is .95 of sand of that color being soft, then as long as I don’t know anything
special about this particular patch of sand that would affect the probability, I will infer that the probability that this
patch of sand is soft is .95. In other words, I infer PROB(St) = .95 from the facts that (1) prob(Sx/Rx) = .95 and (2) Rt.
This illustrates that although definite probabilities and indefinite probabilities are different beasts, we get definite
probabilities by applying indefinite probabilities to particular situations. A theory of direct inference must explain
how this works. Unfortunately, in many cases it is more difficult to see what inference to make. For example, I may
know that prob(Sx/Rx) = .95 and Rt, but also that prob(Sx/Ux) = .75 and Ut. Then what should I conclude about



PROB(St)?
The basic idea behind direct inference was first articulated by Hans Reichenbach [50]: in determining the

probability that an individual c has a property F, we find the narrowest reference class X for which we have reliable
statistics and then infer that PROB(Fc) = prob(Fx/x∈X). For example, insurance rates are calculated in this way.
There is almost universal agreement that direct inference is based upon some such principle as this, although there is
little agreement about the precise form the theory should take. There are, as far as I know, just four theories of direct
inference that have been worked out in detail: Kyburg [12], Levi [13], Bacchus (1990), and Pollock [28]. Halpern
(1990) discusses the distinction between definite and indefinite probabilities, but does not explore the topic of direct
inference.

Direct inference proceeds by using what we know or are justified in believing about particular objects in
particular situations to instantiate indefinite probabilities. If we are justified in believing G1c, G2c, and G3c and we
know that prob(Fx/G1x & G2x & G3x) = r, this gives us a reason for believing that PROB(Fc) = r. However, such
reasoning is subject to a “total evidence” requirement. If we are also justified in believing G4c, and we know that
prob(Fx/G1x & G2x & G3x & G4x) = s ≠ r, then we should infer that PROB(Fc) = s. Thus the original inference must
be defeasible, and it is defeated by acquiring additional justified beliefs that instantiate different indefinite probabilities.

As a first approximation, we can capture the dynamics of this reasoning using two principles:
(DI) “Gc & prob(Fx/Gx) = r” is a defeasible reason for “PROB(Fc) = r”.
(SDI) “Hc & prob(Fx/Gx & Hx) ≠ prob(Fx/Gx)” is a defeater for (DI).

In the preceding example, by (DI) we have a defeasible reason for believing that PROB(Fc) = r, and also a defeasible
reason for believing that PROB(Fc) = s. In the absence of any other defeaters, these two inferences (to incompatible
conclusions) would defeat each other “collectively”. However, by (SDI), we also have a defeater for the inference to
the conclusion that PROB(Fc) = r, so that inference is defeated leaving the inference to the conclusion that PROB(Fc) =
s undefeated. Thus we get the effect of the total evidence requirement (see my [37]).

Consider a concrete example. Suppose once more that the rover is deciding whether to attempt to drive over a
patch of sand, and it wants to know the probability that it is soft. The sand has a particular reddish cast, and the rover
knows that the probability of sand of that color being soft is .95. This gives it a defeasible reason for thinking that the
probability is .95 that this sand is soft. However, the sand also has a certain texture, and the rover knows that the
probability of sand being soft when it has that combination of color and texture is only .6. Then the rover also has a
defeasible reason for thinking that the probability is .6 of this sand being soft. This conflict is resolved by (SDI),
according to which the latter inference takes precedence over the former because it is based on more information.

This is only a very rough sketch of a theory of direct inference. As Kyburg [12] was the first to note, more
defeaters than just (SDI) are required to make the theory work. I proposed a more extensive theory in [28], but that
theory is still not complete. The point I want to make here is just that the design of a sophisticated autonomous agent
requires us to work out the details of some such theory of direct inference, and implement it. The theory sketched
here makes essential use of defeasible reasoning, and I think this will be equally true of any adequate theory. So the
theory must be implemented on top of a general-purpose defeasible reasoner. The completion of the theory of direct
inference and its implementation in OSCAR will be my principal objective once the work described in section five is
completed. It will occupy the last year and a half of the grant.

The purpose of this research is not just to work out a theory, but also to implement it within OSCAR. An
implementation of this reasoning is necessary for implementing decision-theoretic planning in an agent operating in
an environment of sufficient complexity that it cannot simply be given a complete probability distribution ahead of
time by its designers.

7. Research Plan
The problem of building intelligent robots like a sophisticated autonomous rover is not going to be solved by

engineering alone. Engineering needs sound theory, and in many cases the theory required for solving this problem
still needs to be developed. OSCAR is closer to providing the necessary foundation than any other existing system,
but there is still much work to be done.  During the first 12 months, I will work on refining the new semantics for
defeasible reasoning and developing an efficient implementation of it.  During the next six months we will develop
the database tools required to make OSCAR efficient when reasoning with a huge database of information. This will
be based on the work sketched above. Then during the last 18 months I will turn to probabilistic reasoning. There is
both theoretical work and implementational work to be done here. The basic theory is that of my [28], but in the



thirteen years since that book was published, some difficulties have been uncovered, and the theory must be refined
to meet them. The theory must be implemented in a efficient manner. That will provide the ability to test the theory
by applying it to realistic reasoning problems. This will also provide the inference engine for future work on
decision-theoretic planning.

8. Broader Impacts
My research and educational activities are tightly linked. The educational impact of my work beyond the

University of Arizona is largely via my web site, where I post my papers, research reports, and the software
produced as part of the OSCAR Project. A quick review of my e-mail files reveals that in the last three years the
OSCAR software has been downloaded and used by graduate students and in graduate courses at Rensselaer
Polytechnic Institute, The University of New South Wales (Australia), McMaster University (Canada), Carnegie
Mellon University, The University of Prague, Moscow University, and Technical University Cluj-Napoca, (Romania).
This list just reflects the students who have contacted me about it. No doubt others have downloaded it and used it
without contacting me, as I make it freely available for educational or research purposes. In the last three years I
have also given public lectures on artificial intelligence and rationality at Rensselaer Polytechnic Institute, to the
Brandeis Women’s club, and in the public lecture series sponsored by the School of Architecture at the University of
Arizona. I also gave a week-long seminar (15 hours) in the Computer Science Department at Universidad Nacional
del Sur in Bahia Blanca, Argentina. In connection with the latter, I produced an extensive set of (432) fairly
self-contained powerpoint slides, which are posted on my web site. In effect, this constitutes a web-based course on
AI, admittedly as seen from my own perspective. The slides are often downloaded by people searching the web for
information about AI.

Within the University of Arizona, I represent the main bastion of education in AI. The faculty members of the
Computer Science Department at the University of Arizona have traditionally not had an active interest in AI
(although that may be changing with one recent hire in computer vision and another in language processing), but the
students (both undergraduates and graduates) are very interested in it. I teach an extremely popular upper division
and graduate level AI course that is crosslisted in computer science, psychology, and philosophy. Last year I had
seventy five students enrolled in the course (more than I wanted, but I hate to turn interested students away). There
were even more students who wanted to take it, but the limited size of the computer lab made it impossible to
accommodate them. The course is organized around the task of building autonomous rational agents. I introduce
students to LISP (a few already know it), and then the students are exposed to both AI theory and programming. By
the end of the semester, we have constructed a simple cognitive agent.

Because I am the only faculty member doing research in “theoretical AI” (there is some applied AI research in
Electrical and Computer Engineering and MIS), I am also the only source of financial support for graduate students
who want to do research in this area. I get a huge number of applications from students in Computer Science and
ECE who want to work in my lab, but I am unable to hire most of them. I am currently supporting three graduate
RA’s. Two are graduate students in philosophy (one with an MS in computer science), and one is a graduate student
in computer science.

In order to continue funding graduate students at this level, I am asking for money for two RA’s. Given that I am
the only one supporting graduate students with an interest in AI, and given the level of interest among graduate
students in both computer science and philosophy, I hope this will not be viewed as exorbitant. The University of
Arizona apparently agrees with me about the importance of my supporting RA’s in AI, because when I took this
grant proposal to the Dean’s office, without being asked they volunteered to find matching funds to cover the salary
of one additional RA, and were successful in doing so.

Martin Frické
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